Analysis of communication characteristics of Airy vortex beams in turbulent plasma sheath

被引:0
|
作者
Sun, Tingwei [1 ]
Deng, Qingqing [1 ]
Chen, Wei [1 ,2 ]
Bo, Yong [1 ]
Yang, Lixia [1 ]
Guo, Lixin [3 ]
机构
[1] Anhui Univ, Informat Mat & Intelligent Sensing Lab Anhui Prov, Hefei 230601, Peoples R China
[2] Jianghuai Adv Technol Ctr, Hefei 230000, Peoples R China
[3] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
REFRACTIVE-INDEX FLUCTUATION; PROPAGATION CHARACTERISTICS; OCEANIC TURBULENCE; POWER SPECTRUM; CAPACITY;
D O I
10.1063/5.0194716
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this paper, a transmission model of power-exponential Airy vortex beams in plasma turbulence is established based on the random phase screen theory, and the information transmission characteristics of Airy vortex beams are compared under the OOK, BPSK, and DPSK modulation modes in free-space optical communication systems. Bit error rates (BERs) were calculated for different power indices (n), undulation variances (<Delta n(2)>), transmission distances, and anisotropy parameters. In addition, the orbital angular momentum multiplexing of Airy vortex beams in the Line-of-Sight multiple input multiple output system under a plasma turbulence environment is investigated. The spectral efficiency (SE) is analyzed for different signal-to-noise ratio (SNR) and radii of the emitting surface, and the effects of the variation in the system's numerical aperture and the power exponent on the SE and the effective degrees of freedom in space are analyzed. The results show that the Airy beam has better turbulence resistance than the Laguerre-Gaussian beam. The power-exponential Airy beam has better transmission performance than the conventional Airy beam. By increasing the anisotropy parameter, the BER of the system decreases. When the <Delta n(2)> and the transmission distance increase, the BER increases. Increasing the SNR, the radius of the launching surface and the choice of power-exponential Airy beams can improve the channel capacity. These findings provide a theoretical basis for the problem of optical signal propagation in plasma turbulence. (c) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:8
相关论文
empty
未找到相关数据