Temperature-Pressure Swing Process for Reactive Carbon Capture and Conversion to Methanol: Techno-Economic Analysis and Life Cycle Assessment

被引:2
|
作者
Martin, Jonathan A. [1 ]
Tan, Eric C. D. [1 ]
Ruddy, Daniel A. [1 ]
King, Jennifer [1 ]
To, Anh T. [1 ]
机构
[1] NREL, Golden, CO 80401 USA
关键词
methanol; hydrogen; carbon capture; reactive carbon capture; flue gas; techno-economicanalysis; life cycle assessment; decarbonization; CO2; DIOXIDE; FUEL;
D O I
10.1021/acs.est.4c02589
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A model was developed to conduct techno-economic analysis (TEA) and life cycle assessment (LCA) for reactive carbon capture (RCC) and conversion of carbon dioxide (CO2) to methanol. This RCC process is compared to a baseline commercialized flue gas CO2 hydrogenation process. An ASPEN model was combined with existing TEA and LCA models into a larger TEA/LCA framework in Python. From preliminary experimental data, the model found a levelized cost of $0.79/kg methanol for the baseline process and $0.99/kg for the RCC process. The cradle-to-gate carbon intensity of the baseline process was 0.50 kg-CO(2)e/kg-methanol, compared to 0.55 kg-CO(2)e/kg-methanol for the RCC process. However, water consumption for RCC (10.21 kg-H2O/kg-methanol) is greatly reduced compared to the baseline (12.89 kg-H2O/kg-methanol). Future improvements in hydrogen electrolysis costs will benefit the RCC. A target H-2/methanol mass ratio of 0.26 was developed for RCC laboratory experiments to reduce methanol cost below the baseline. If a ratio of 0.24 can be achieved, a levelized cost of $0.76/kg methanol is projected, with a carbon intensity of 0.42 kg-CO(2)e/kg-methanol.
引用
收藏
页码:13737 / 13747
页数:11
相关论文
共 50 条
  • [1] Techno-economic and life cycle assessment for the zero-carbon emission process of the production of methanol from VOCs
    Luo, Qiwei
    Yu, Qianyue
    Li, Qingyang
    Wan, Jun
    Wang, Yurui
    Dai, Baiqian
    Xiang, Wenguo
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (06):
  • [2] The Need for and Path to Harmonized Life Cycle Assessment and Techno-Economic Assessment for Carbon Dioxide Capture and Utilization
    Sick, Volker
    Armstrong, Katy
    Cooney, Gregory
    Cremonese, Lorenzo
    Eggleston, Alexandra
    Faber, Grant
    Hackett, Gregory
    Kaetelhoen, Arne
    Keoleian, Greg
    Marano, John
    Marriott, Joseph
    McCord, Stephen
    Miller, Shelie A.
    Mutchek, Michele
    Olfe-Kraeutlein, Barbara
    Ravikumar, Dwarakanath
    Roper, Louise Kjellerup
    Schaidle, Joshua
    Skone, Timothy
    Smith, Lorraine
    Strunge, Till
    Styring, Peter
    Tao, Ling
    Voelker, Simon
    Zimmermann, Arno
    ENERGY TECHNOLOGY, 2020, 8 (11)
  • [3] A Techno-Economic Analysis on Reactive Capture and Conversion Using Contingent Valuation Method
    Lee, Juyong
    Cho, Eunjung
    ENERGY STORAGE, 2025, 7 (02)
  • [4] A life cycle assessment and techno-economic analysis of plant factories
    Menon, Roohi
    Both, Arend-Jan
    You, Fengqi
    JOURNAL OF CLEANER PRODUCTION, 2025, 490
  • [5] Integration of techno-economic analysis and life cycle assessment for sustainable process design - A review
    Mahmud, Roksana
    Moni, Sheikh Moniruzzaman
    High, Karen
    Carbajales-Dale, Michael
    JOURNAL OF CLEANER PRODUCTION, 2021, 317
  • [6] Techno-economic and life cycle assessment of membrane separation in post-combustion carbon capture: A review
    Fu, Jialin
    Ahmad, Nor Naimah Rosyadah
    Leo, Choe Peng
    Aberilla, Jhud Mikhail
    Dela Cruz, Isaac Jerome
    Alamani, Bryan
    Koh, Siaw Paw
    GAS SCIENCE AND ENGINEERING, 2024, 129
  • [7] Techno-economic analysis and life cycle assessment of mixed plastic waste gasification for production of methanol and hydrogen
    Afzal, Shaik
    Singh, Avantika
    Nicholson, Scott R.
    Uekert, Taylor
    DesVeaux, Jason S.
    Tan, Eric C. D.
    Dutta, Abhijit
    Carpenter, Alberta C.
    Baldwin, Robert M.
    Beckham, Gregg T.
    GREEN CHEMISTRY, 2023, 25 (13) : 5068 - 5085
  • [8] Life Cycle Assessment and Techno-Economic Analysis of Pressure Sensitive Bio-Adhesive Production
    Yang, Minliang
    Rosentrater, Kurt A.
    ENERGIES, 2019, 12 (23)
  • [9] A comprehensive process modelling, techno-economic and life cycle assessment of a power to ammonia process
    Cuevas-Castillo, Gabriela A.
    Michailos, Stavros
    Hughes, Kevin
    Ingham, Derek
    Pourkashanian, Mohamed
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2025, 76
  • [10] Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators
    Ahmed, Abdelsalam
    Hassan, Islam
    Ibn-Mohammed, Taofeeq
    Mostafa, Hassan
    Reaney, Ian M.
    Koh, Lenny S. C.
    Zu, Jean
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (03) : 653 - 671