Fine-tuned protein-lipid interactions in biological membranes: exploration and implications of the ORMDL-ceramide negative feedback loop in the endoplasmic reticulum

被引:1
作者
Dingjan, Tamir [1 ]
Futerman, Anthony H. [1 ]
机构
[1] Weizmann Inst Sci, Dept Biomol Sci, Rehovot, Israel
关键词
fine-tuning; sphingolipid; ceramide; endoplasmic reticulum; ORMDL; ALKALINE CERAMIDASE; DIHYDROCERAMIDE; HOMEOSTASIS; METABOLISM; PALMITOYLTRANSFERASE; SPHINGOLIPIDS; DESATURASE; EXPRESSION; ENZYME; MICE;
D O I
10.3389/fcell.2024.1457209
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Biological membranes consist of a lipid bilayer in which integral membrane proteins are embedded. Based on the compositional complexity of the lipid species found in membranes, and on their specific and selective interactions with membrane proteins, we recently suggested that membrane bilayers can be best described as "finely-tuned molecular machines." We now discuss one such set of lipid-protein interactions by describing a negative feedback mechanism operating in the de novo sphingolipid biosynthetic pathway, which occurs in the membrane of the endoplasmic reticulum, and describe the atomic interactions between the first enzyme in the pathway, namely serine palmitoyl transferase, and the product of the fourth enzyme in the pathway, ceramide. We explore how hydrogen-bonding and hydrophobic interactions formed between Asn13 and Phe63 in the serine palmitoyl transferase complex and ceramide can influence the ceramide content of the endoplasmic reticulum. This example of finely-tuned biochemical interactions raises intriguing mechanistic questions about how sphingolipids and their biosynthetic enzymes could have evolved, particularly in light of their metabolic co-dependence.
引用
收藏
页数:8
相关论文
共 70 条
[1]   Sphingolipid homeostasis in the web of metabolic routes [J].
Aguilera-Romero, Auxiliadora ;
Gehin, Charlotte ;
Riezman, Howard .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2014, 1841 (05) :647-656
[2]   Three kingdoms and one ceramide to rule them all. A comparison of the structural basis of ceramide-dependent regulation of sphingolipid biosynthesis in animals, plants, and fungi [J].
AL Mughram, Mohammed H. ;
Kellogg, Glen E. ;
Wattenberg, Binks W. .
ADVANCES IN BIOLOGICAL REGULATION, 2024, 91
[3]   Simulation and validation of modelled sphingolipid metabolism in Saccharomyces cerevisiae [J].
Alvarez-Vasquez, F ;
Sims, KJ ;
Cowart, LA ;
Okamoto, Y ;
Voit, EO ;
Hannun, YA .
NATURE, 2005, 433 (7024) :425-430
[4]  
Barrow John., 1996, The Anthropic Cosmological Principle
[5]  
Biran Assaf, 2024, Curr Top Membr, DOI 10.1016/bs.ctm.2024.06.001
[6]   The Sphinx and the egg: Evolutionary enigmas of the (glyco)sphingolipid biosynthetic pathway [J].
Biran, Assaf ;
Santos, Tania C. B. ;
Dingjan, Tamir ;
Futerman, Anthony H. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2024, 1869 (03)
[7]   Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond [J].
Breslow, David K. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (04) :1-16
[8]   The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice [J].
Clarke, Benjamin A. ;
Majumder, Saurav ;
Zhu, Hongling ;
Lee, Y. Terry ;
Kono, Mari ;
Li, Cuiling ;
Khanna, Caroline ;
Blain, Hailey ;
Schwartz, Ronit ;
Huso, Vienna L. ;
Byrnes, Colleen ;
Tuymetova, Galina ;
Dunn, Teresa M. ;
Allende, Maria L. ;
Proia, Richard L. .
ELIFE, 2019, 8
[9]   Central Ceramide-Induced Hypothalamic Lipotoxicity and ER Stress Regulate Energy Balance [J].
Contreras, Cristina ;
Gonzalez-Garcia, Ismael ;
Martinez-Sanchez, Noelia ;
Seoane-Collazo, Patricia ;
Jacas, Jordi ;
Morgan, Donald A. ;
Serra, Dolors ;
Gallego, Rosalia ;
Gonzalez, Francisco ;
Casals, Nuria ;
Nogueiras, Ruben ;
Rahmouni, Kamal ;
Dieguez, Carlos ;
Lopez, Miguel .
CELL REPORTS, 2014, 9 (01) :366-377
[10]  
Davis Deanna, 2018, Advances in Biological Regulation, V70, P3, DOI 10.1016/j.jbior.2018.08.002