Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [41] On the Number of Weighted Shortest Paths in the Square Grid
    Alzboon, Laith
    Khassawneh, Bashar
    Nagy, Benedek
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES), 2017, : 83 - 90
  • [42] Finding Shortest Paths Between Graph Colourings
    Johnson, Matthew
    Kratsch, Dieter
    Kratsch, Stefan
    Patel, Viresh
    Paulusma, Daniel
    PARAMETERIZED AND EXACT COMPUTATION, IPEC 2014, 2014, 8894 : 221 - 233
  • [43] Finding Shortest Paths Between Graph Colourings
    Johnson, Matthew
    Kratsch, Dieter
    Kratsch, Stefan
    Patel, Viresh
    Paulusma, Daniel
    ALGORITHMICA, 2016, 75 (02) : 295 - 321
  • [44] Shortest Paths with Shortest DetoursA Biobjective Routing Problem
    Carolin Torchiani
    Jan Ohst
    David Willems
    Stefan Ruzika
    Journal of Optimization Theory and Applications, 2017, 174 : 858 - 874
  • [45] AN ALGORITHM FOR THE RANKING OF SHORTEST PATHS
    AZEVEDO, JA
    COSTA, MEOS
    MADEIRA, JJERS
    MARTINS, EQV
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1993, 69 (01) : 97 - 106
  • [46] Computing shortest paths with uncertainty
    Feder, Tomas
    Motwani, Rajeev
    O' Callaghan, Liadan
    Olston, Chris
    Panigrahy, Rina
    JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 2007, 62 (01): : 1 - 18
  • [47] APPROXIMATE SHORTEST PATHS AVOIDING A FAILED VERTEX : OPTIMAL SIZE DATA STRUCTURES FOR UNWEIGHTED GRAPHS
    Khanna, Neelesh
    Baswana, Surender
    27TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2010), 2010, 5 : 513 - 524
  • [48] The Complexity of Rerouting Shortest Paths
    Bonsma, Paul
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2012, 2012, 7464 : 222 - 233
  • [49] AN AUCTION ALGORITHM FOR SHORTEST PATHS
    Bertsekas, Dimitri P.
    SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (04) : 425 - 447
  • [50] Shortest paths with ordinal weights
    Schaefer, Luca E.
    Dietz, Tobias
    Froehlich, Nicolas
    Ruzika, Stefan
    Figueira, Jose R.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 280 (03) : 1160 - 1170