Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [21] Reconfiguring Simple s, t Hamiltonian Paths in Rectangular Grid Graphs
    Nishat, Rahnuma Islam
    Srinivasan, Venkatesh
    Whitesides, Sue
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 501 - 515
  • [23] Practical mesh algorithms for finding shortest paths in grid graphs
    Shi, HC
    Gader, P
    INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED PROCESSING TECHNIQUES AND APPLICATIONS, VOLS I-III, PROCEEDINGS, 1997, : 725 - 731
  • [24] A fully dynamic approximation scheme for shortest paths in planar graphs
    Klein, PN
    Subramanian, S
    ALGORITHMICA, 1998, 22 (03) : 235 - 249
  • [25] Oracles for Bounded-Length Shortest Paths in Planar Graphs
    Kowalik, Lukasz
    Kurowski, Maciej
    ACM TRANSACTIONS ON ALGORITHMS, 2006, 2 (03) : 335 - 363
  • [26] The partial sum criterion for Steiner trees in graphs and shortest paths
    Duin, CW
    Volgenant, A
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1997, 97 (01) : 172 - 182
  • [27] Successive shortest paths in complete graphs with random edge weights
    Gerke, Stefanie
    Mezei, Balazs F.
    Sorkin, Gregory B.
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 1205 - 1247
  • [28] New Algorithms and Hardness for Incremental Single-Source Shortest Paths in Directed Graphs
    Gutenberg, Maximilian Probst
    Williams, Virginia Vassilevska
    Wein, Nicole
    PROCEEDINGS OF THE 52ND ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING (STOC '20), 2020, : 153 - 166
  • [29] Shortest Paths between Shortest Paths and Independent Sets
    Kaminski, Marcin
    Medvedev, Paul
    Milanic, Martin
    COMBINATORIAL ALGORITHMS, 2011, 6460 : 56 - +
  • [30] Shortest Paths with Shortest Detours
    Torchiani, Carolin
    Ohst, Jan
    Willems, David
    Ruzika, Stefan
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (03) : 858 - 874