Reconfiguring Shortest Paths in Graphs

被引:0
|
作者
Gajjar, Kshitij [1 ]
Jha, Agastya Vibhuti [2 ]
Kumar, Manish [3 ]
Lahiri, Abhiruk [4 ]
机构
[1] Indian Inst Technol Jodhpur, Jodhpur, India
[2] Ecole Polytech Fed Lausanne, Lausanne, Switzerland
[3] Negev & Bar ilan Univ, Bengur Univ, Beer Sheva, Israel
[4] Charles Univ Prague, Prague, Czech Republic
基金
以色列科学基金会;
关键词
Reconfiguration; Shortest path; PSPACE-complete; Circle graph; Boolean hypercube; Bridged graph; Line graph; Hardness of approximation; COMPLEXITY; CONNECTION; HYPERCUBES; NETWORKS;
D O I
10.1007/s00453-024-01263-y
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Reconfiguring two shortest paths in a graph means modifying one shortest path to the other by changing one vertex at a time so that all the intermediate paths are also shortest paths. This problem has several natural applications, namely: (a) repaving road networks, (b) rerouting data packets in a synchronous multiprocessing setting, (c) the shipping container stowage problem, and (d) the train marshalling problem. When modelled as graph problems, (a) is the most general case while (b), (c), (d) are restrictions to different graph classes. We show that (a) does not admit polynomial-time algorithms (assuming P not equal NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {NP}}\,}}$$\end{document}), even for relaxed variants of the problem (assuming P not equal PSPACE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\texttt {P}}\,}}\ne {{\,\mathrm{\texttt {PSPACE}}\,}}$$\end{document}). For (b), (c), (d), we present polynomial-time algorithms to solve the respective problems. We also generalize the problem to when at most k (for a fixed integer k >= 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}) contiguous vertices on a shortest path can be changed at a time.
引用
收藏
页码:3309 / 3338
页数:30
相关论文
共 50 条
  • [11] Approximate shortest paths in weighted graphs
    Yuster, Raphael
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (02) : 632 - 637
  • [12] Parametric Shortest Paths in Planar Graphs
    Gajjar, Kshitij
    Radhakrishnan, Jaikumar
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 876 - 895
  • [13] On Shortest Disjoint Paths in Planar Graphs
    Kobayashi, Yusuke
    Sommer, Christian
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5878 : 293 - +
  • [14] Fuzzy shortest paths in fuzzy graphs
    Baniamerian, Amir
    Menhaj, Mohammad Bagher
    COMPUTATIONAL INTELLIGENCE, THEORY AND APPLICATION, 2006, : 757 - 764
  • [15] Shortest paths between shortest paths
    Kaminski, Marcin
    Medvedev, Paul
    Milanic, Martin
    THEORETICAL COMPUTER SCIENCE, 2011, 412 (39) : 5205 - 5210
  • [16] Shortest paths in intersection graphs of unit disks
    Cabello, Sergio
    Jejcic, Miha
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2015, 48 (04): : 360 - 367
  • [17] On Mining Dynamic Graphs for k Shortest Paths
    D'Ascenzo, Andrea
    D'Emidio, Mattia
    SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2024, PT I, 2025, 15211 : 320 - 336
  • [18] Anonymizing Shortest Paths on Social Network Graphs
    Wang, Shyue-Liang
    Tsai, Zheng-Ze
    Hong, Tzung-Pei
    Ting, I-Hsien
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2011, PT I, 2011, 6591 : 129 - 136
  • [19] The Number of Shortest Paths in the (n, k)-Star Graphs
    Cheng, Eddie
    Qiu, Ke
    Shen, Zhi Zhang
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PT 1, 2010, 6508 : 222 - +
  • [20] Tight Hardness for Shortest Cycles and Paths in Sparse Graphs
    Lincoln, Andrea
    Williams, Virginia Vassilevska
    Williams, Ryan
    SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2018, : 1236 - 1252