Facile synthesis of ultrathin Co5(O9.48H8.52)NO3 nanosheets and their electric-field assisted transformation into a defect-rich Co3O4/CoOOH heterostructure for efficient oxygen evolution

被引:0
作者
Zhang, Guofeng [1 ]
Cao, Xiaojun [2 ]
Yu, Jingjing [3 ]
Xian, Shuangyu [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Chem Engn, Jinan 250353, Peoples R China
[2] Qilu Pharmaceut Co Ltd, Jinan 250100, Peoples R China
[3] Qilu Univ Technol, Shandong Acad Sci, Sch Biol Engn, Jinan 250353, Peoples R China
关键词
VACANCIES; MECHANISM; CATALYST;
D O I
10.1039/d4ce00676c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Facile preparation of low-cost electrocatalysts for an efficient oxygen evolution reaction (OER) is significant but remains a big challenge. Herein, a novel and facile strategy for transforming intrinsic non-stoichiometric ultrathin Co-5(O9.48H8.52)NO3 nanosheets into oxygen-vacancy enriched Co3O4/CoOOH heterostructure nanosheets for an efficient OER was developed. The as-synthesized Co3O4/CoOOH heterostructure nanosheets displayed excellent OER performances, showing an extremely low overpotential of 260 mV at a current density of 10 mA cm(-2), a relatively small Tafel slope of 52 mV dec(-1), and a long-term durability of at least 20 h. This work provides a new way for the production of oxygen vacancies on metal (oxy)hydroxide nanosheets through electric-field assisted in situ transformation of non-stoichiometric metal oxyhydroxide nanosheets.
引用
收藏
页码:5258 / 5266
页数:9
相关论文
共 53 条
[1]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[2]  
Banger KK, 2011, NAT MATER, V10, P45, DOI [10.1038/nmat2914, 10.1038/NMAT2914]
[3]   Designing and Tuning the Electronic Structure of Nickel-Vanadium Layered Double Hydroxides for Highly Efficient Oxygen Evolution Electrocatalysis [J].
Chavan, Harish S. ;
Lee, Chi Ho ;
Inamdar, Akbar I. ;
Han, Jonghoon ;
Park, Sunjung ;
Cho, Sangeun ;
Shreshta, Nabeen K. ;
Lee, Sang Uck ;
Hou, Bo ;
Im, Hyunsik ;
Kim, Hyungsang .
ACS CATALYSIS, 2022, 12 (07) :3821-3831
[4]   Layered Structure Causes Bulk NiFe Layered Double Hydroxide Unstable in Alkaline Oxygen Evolution Reaction [J].
Chen, Rong ;
Hung, Sung-Fu ;
Zhou, Daojin ;
Gao, Jiajian ;
Yang, Cangjie ;
Tao, Huabing ;
Yang, Hong Bin ;
Zhang, Liping ;
Zhang, Lulu ;
Xiong, Qihua ;
Chen, Hao Ming ;
Liu, Bin .
ADVANCED MATERIALS, 2019, 31 (41)
[5]   S-Doping Triggers Redox Reactivities of Both Iron and Lattice Oxygen in FeOOH for Low-Cost and High-Performance Water Oxidation [J].
Chen, Xiang ;
Wang, Qicheng ;
Cheng, Yuwen ;
Xing, Hanlu ;
Li, Junzhe ;
Zhu, Xianjun ;
Ma, Lianbo ;
Li, Yongtao ;
Liu, Dongming .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (26)
[6]   Funnel hopping: Searching the cluster potential energy surface over the funnels [J].
Cheng, Longjiu ;
Feng, Yan ;
Yang, Jie ;
Yang, Jinlong .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (21)
[7]   Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis [J].
Cheng, Weiren ;
Zhao, Xu ;
Su, Hui ;
Tang, Fumin ;
Che, Wei ;
Zhang, Hui ;
Liu, Qinghua .
NATURE ENERGY, 2019, 4 (02) :115-122
[8]   A strongly coupled 3D ternary Fe2O3@Ni2P/Ni(PO3)2 hybrid for enhanced electrocatalytic oxygen evolution at ultra-high current densities [J].
Cheng, Xiaodi ;
Pan, Zhiyan ;
Lei, Chaojun ;
Jin, Yangjun ;
Yang, Bin ;
Li, Zhongjian ;
Zhang, Xingwang ;
Lei, Lecheng ;
Yuan, Chris ;
Hou, Yang .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (03) :965-971
[9]   The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis [J].
Dau, Holger ;
Limberg, Christian ;
Reier, Tobias ;
Risch, Marcel ;
Roggan, Stefan ;
Strasser, Peter .
CHEMCATCHEM, 2010, 2 (07) :724-761
[10]   Pd-PdO Nanodomains on Amorphous Ru Metallene Oxide for High-Performance Multifunctional Electrocatalysis [J].
Do, Viet-Hung ;
Prabhu, P. ;
Jose, Vishal ;
Yoshida, Takefumi ;
Zhou, Yingtang ;
Miwa, Hiroko ;
Kaneko, Takuma ;
Uruga, Tomoya ;
Iwasawa, Yasuhiro ;
Lee, Jong-Min .
ADVANCED MATERIALS, 2023, 35 (12)