N=2a=1 supersymmetric KdV equation and its Darboux-Bäcklund transformations

被引:0
作者
Yang, XiaoXia [1 ]
Xue, Lingling [2 ]
Liu, Q. P. [3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Ningbo Univ, Dept Appl Math, Ningbo 315211, Peoples R China
[3] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Backlund transformations; integrable systems; Darboux transformations; nonlinear superposition formula; supersymmetric integrable systems; PERIODIC-WAVE SOLUTIONS; BACKLUND-TRANSFORMATIONS; SOLITON-SOLUTIONS; EXTENSION;
D O I
10.1088/1572-9494/ad6a04
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the N = 2a = 1 supersymmetric KdV equation. We construct its Darboux transformation and the associated B & auml;cklund transformation. Furthermore, we derive a nonlinear superposition formula, and as applications we calculate some solutions for this supersymmetric KdV equation and recover the related results for the Kersten-Krasil'shchik coupled KdV-mKdV system.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Extension of the bilinear formalism to supersymmetric KdV-type equations [J].
Carstea, AS .
NONLINEARITY, 2000, 13 (05) :1645-1656
[2]   Constructing the soliton solutions for the N=1 supersymmetric KdV hierarchy [J].
Carstea, AS ;
Ramani, A ;
Grammaticos, B .
NONLINEARITY, 2001, 14 (05) :1419-1423
[3]   Super extension of Bell polynomials with applications to supersymmetric equations [J].
Fan, Engui ;
Hon, Y. C. .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (01)
[4]  
Figueroa-O'Farrill J. M., 1991, Reviews in Mathematical Physics, V3, P479, DOI 10.1142/S0129055X91000175
[5]  
Gao P., 2021, J. Ningbo Univ, V34, P30
[6]   Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation [J].
Gao, Xiao Nan ;
Lou, S. Y. ;
Tang, Xiao Yan .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)
[7]   Bosonization of supersymmetric KdV equation [J].
Gao, Xiao Nan ;
Lou, S. Y. .
PHYSICS LETTERS B, 2012, 707 (01) :209-215
[8]  
Gu CH., 2005, DARBOUX TRANSFORMATI, DOI DOI 10.1007/1-4020-3088-6
[9]  
Hietarinta J., 2016, Discrete Systems and Integrablity
[10]  
Hon YC, 2011, THEOR MATH PHYS+, V166, P317, DOI 10.1007/s11232-011-0026-x