A robust and real-time lane detection method in low-light scenarios to advanced driver assistance systems

被引:2
作者
Zhang, Ronghui [1 ]
Peng, Jingtao [1 ]
Gou, Wanting [1 ]
Ma, Yuhang [1 ]
Chen, Junzhou [1 ,3 ]
Hu, Hongyu [2 ]
Li, Weihua [4 ]
Yin, Guodong [5 ]
Li, Zhiwu [6 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangdong Key Lab Intelligent Transportat Syst, Guangzhou 510275, Peoples R China
[2] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun 130022, Peoples R China
[3] Univ Durham, Dept Engn, Durham DH1 3LE, England
[4] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510640, Peoples R China
[5] Southeast Univ, Sch Mech Engn, Nanjing 211189, Peoples R China
[6] Macau Univ Sci & Technol, Inst Syst Engn, Taipa 999078, Macao, Peoples R China
基金
中国国家自然科学基金;
关键词
ADAS; Lane detection; Real-time; Low-light scenarios; Low-light lane detection datasets; Embedded instrumentation system; HISTOGRAM EQUALIZATION; ENHANCEMENT; RETINEX;
D O I
10.1016/j.eswa.2024.124923
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lane detection, which relies on front-view RGB cameras, is a crucial aspect of Advanced Driver Assistance Systems (ADAS), but its effectiveness is notably reduced in low-light conditions. This issue is exacerbated by the lack of specialized datasets and generalizable methods for such scenarios. To address this gap, we introduce NightLane, a comprehensive dataset tailored for low-light, multi-traffic lane detection. We adhere to stringent data annotation guidelines, ensuring reliable detection accuracy. Additionally, we propose the Fused Low-Light Enhancement Framework (FLLENet), which leverages modern detection networks and incorporates a low-light enhancement module and attention mechanisms. The enhancement module, based on zero-reference learning, improves image quality and channel richness, while the attention mechanisms effectively extract and utilize these features. Our extensive testing on NightLane and CULane datasets demonstrates superior performance in low-light lane detection, showcasing FLLENet's robust generalizability and efficacy. Specifically, our approach achieves an F1 measure of 76.90 on CULane and 78.91 on NightLane, demonstrating its effectiveness against state-of-the-art methods. We also evaluate the real-time applicability of our framework on a low-power embedded lane detection system using NVIDIA Jetson AGX/Orin, achieving high accuracy and real-time performance. Our work offers a new approach and reference in the field of low-light lane detection, potentially aiding in the ongoing enhancement of ADAS (ADAS). Dateset are available at https: //github.com/pengjingt/FLLENet.
引用
收藏
页数:21
相关论文
共 32 条
  • [31] Real-Time Voltage Drop Compensation Method With Cable Impedance Detection Capability for Remote Power Supply Systems
    Fang, Mingzhu
    Zhang, Donglai
    Qi, Xianbin
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (08) : 9322 - 9328
  • [32] A real-time and robust feature detection method using hierarchical strategy and modified Kalman filter for thick plate seam tracking
    Kiddee P.
    Fang Z.
    Tan M.
    Kiddee, Prasarn (prasarnkid@gmail.com), 1600, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (11): : 428 - 446