Identification of propagation characteristics from meteorological drought to hydrological drought using daily drought indices and lagged correlations analysis

被引:1
作者
Jeong, Min-Su [1 ]
Park, Seo-Yeon [2 ]
Kim, Young-Jun [2 ]
Yoon, Hyeon-Cheol [3 ]
Lee, Joo-Heon [4 ]
机构
[1] Drought Res Ctr, Goyang, South Korea
[2] Joongbu Univ, Dept Civil Engn, Goyang, South Korea
[3] Natl Disaster Management Res Inst, Natl Integrated Drought Ctr, Ulsan 44538, South Korea
[4] Joongbu Univ, Civil Engn Dept, Goyang, South Korea
基金
新加坡国家研究基金会;
关键词
Standardized Precipitation Index; Standardized Reservoir Supply Index; Drought Propagation; Time-Lagged Correlation Analysis; Multiple Regression Analysis; TIME;
D O I
10.1016/j.ejrh.2024.101939
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: The Juam Dam area in Suncheon, Jeollanam-do, South Korea Study focus: This study aims to analyze drought propagation characteristics using time-lagged correlation analysis based on daily drought index, determining the lag time from meteorological drought to propagation into hydrological drought. The target period for correlation analysis is the onset date of the dry spell preceding the occurrence of hydrological drought and the termination date of the dry spell following the termination of the drought for each drought event. The Standardized Precipitation Index (SPI) at various time-scales for meteorological drought and the Standardized Reservoir Supply Index (SRSI) for hydrological drought were applied. New hydrological insights for the region: This study presents the objectivity and accuracy of drought onset and termination date for drought propagation analysis through daily lagged correlation analysis. Through ROC analysis, SPI90, SPI180, and SPI365 are shown to increase by an average of 16.0%, 8.8 %, and 6.0%, respectively. From 1993-2023, long-term hydrological droughts lasting 2 years occurred 5 times, with a maximum duration of 408 days, magnitude -629, and severity -1.76. The daily lag between the multi-scale SPIs and SRSI of individual drought events presents the possibility of predicting hydrological drought through multiple regression analysis. This research provides insights for improving hydrological drought monitoring, prediction, and response strategies through results of individual propagation characteristics of drought events.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Propagation law from meteorological drought to hydrological drought in the Tarim River Basin under the impact of human activities
    Xue L.
    Bai Q.
    Liu Y.
    Water Resources Protection, 2023, 39 (01) : 57 - 62and72
  • [32] Investigating effect of climate change on drought propagation from meteorological to hydrological drought using multi-model ensemble projections
    Muhammad Jehanzaib
    Muhammad Nouman Sattar
    Joo-Heon Lee
    Tae-Woong Kim
    Stochastic Environmental Research and Risk Assessment, 2020, 34 : 7 - 21
  • [33] Responses of meteorological drought-hydrological drought propagation to watershed scales in the upper Huaihe River basin, China
    Yu, Meixiu
    Liu, Xiaolong
    Li, Qiongfang
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (15) : 17561 - 17570
  • [34] Insights from CMIP6 SSP scenarios for future characteristics of propagation from meteorological drought to hydrological drought in the Pearl River Basin
    Zhou, Zhaoqiang
    Ding, Yibo
    Fu, Qiang
    Wang, Can
    Wang, Yao
    Cai, Hejiang
    Liu, Suning
    Huang, Shengzhi
    Shi, Haiyun
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 899
  • [35] The Evolution of Drought and Propagation Patterns from Meteorological Drought to Agricultural Drought in the Pearl River Basin
    Zhou, Yaoqiang
    Li, Jiayu
    Jia, Wenhao
    Zhang, Fei
    Zhang, Hongjie
    Wang, Sen
    WATER, 2025, 17 (08)
  • [36] Assessing the Effect of Future Climate Change on Drought Characteristics and Propagation from Meteorological to Hydrological Droughts-A Comparison of Three Indices
    Sadhwani, Kashish
    Eldho, T. I.
    WATER RESOURCES MANAGEMENT, 2024, 38 (02) : 441 - 462
  • [37] Seasonal Propagation Characteristics from Meteorological to Hydrological Drought and Their Dynamics in the Headstreams of the Tarim River Basin
    Wang, Zhixia
    Huang, Shengzhi
    Huang, Qiang
    Duan, Weili
    Leng, Guoyong
    Guo, Yi
    Zheng, Xudong
    Nie, Mingqiu
    Han, Zhiming
    Dong, Haixia
    Peng, Jian
    JOURNAL OF HYDROMETEOROLOGY, 2022, 23 (09) : 1487 - 1506
  • [38] Propagation of meteorological to hydrological drought for different climate regions in China
    Ding, Yibo
    Xu, Jiatun
    Wang, Xiaowen
    Cai, Huanjie
    Zhou, Zhaoqiang
    Sun, Yanan
    Shi, Haiyun
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 283
  • [39] Analysis of propagation thresholds and impact mechanisms from meteorological drought to hydrological drought in the middle and upper reaches of the Han River Basin, China
    Qianjin Dong
    Kujun Chen
    Weishan Deng
    Hairong Zhang
    Jun Zhang
    Environmental Monitoring and Assessment, 197 (6)
  • [40] Probabilistic long-term hydrological drought forecast using Bayesian networks and drought propagation
    Shin, Ji Yae
    Kwon, Hyun-Han
    Lee, Joo-Heon
    Kim, Tae-Woong
    METEOROLOGICAL APPLICATIONS, 2020, 27 (01)