Moore-Penrose inverse of an interval matrix and its application

被引:1
作者
Dehghani-Madiseh, Marzieh [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Math Sci & Comp, Dept Math, Ahvaz, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2024年 / 12卷 / 01期
关键词
Inverse matrix; Moore-Penrose inverse; rectangular linear system;
D O I
10.22124/JMM.2023.24972.2219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of Moore-Penrose inverse of a rectangular interval matrix based on a modified interval arithmetic. We determine the Moore-Penrose inverse in such a way that it satisfies all the four criteria similar to the real case. Also, we use the Moore-Penrose inverse for solving rectangular interval linear systems, algebraically.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 50 条
[31]   Particular formulae for the Moore-Penrose inverse of a columnwise partitioned matrix [J].
Baksalary, Jerzy K. ;
Baksalary, Oskar Maria .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (01) :16-23
[32]   GENERALIZED COMMUTATORS AND THE MOORE-PENROSE INVERSE [J].
Pressman, Irwin S. .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2021, 37 :598-612
[33]   Moore-penrose inverse in Krein spaces [J].
Mary, Xavier .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2008, 60 (03) :419-433
[34]   SPECTRAL PERMANENCE FOR THE MOORE-PENROSE INVERSE [J].
Djordjevic, Dragan S. ;
Zivkovic-Zlatanovic, Snezana C. ;
Harte, Robin E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (09) :3237-3245
[35]   Moore-Penrose inverse in rings with involution [J].
Koliha, J. J. ;
Djordjevic, Dragan ;
Cvetkovic, Dragana .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 426 (2-3) :371-381
[36]   NEW REPRESENTATIONS FOR THE MOORE-PENROSE INVERSE [J].
Wang, Hongxing ;
Wei, Musheng .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2011, 22 :720-728
[37]   The Moore-Penrose Inverse in Rings with Involution [J].
Xu, Sanzhang ;
Chen, Jianlong .
FILOMAT, 2019, 33 (18) :5791-5802
[38]   ON THE MOORE-PENROSE INVERSE IN RINGS WITH INVOLUTION [J].
Mosic, Dijana .
MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) :347-351
[39]   Moore-Penrose inverse in rings with involution [J].
Zhuang, Guifen ;
Chen, Jianlong .
PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPLICATIONS, VOL 3, 2009, :373-376
[40]   Application of Moore-Penrose Inverse in Deciding the Minimal Martingale Measure [J].
Luogen YaoGang YangXiangqun Yang Information Department of Hunan Business CollegeChangsha China College of Mathematics and Computer ScienceHunan Normal UniversityChangsha China .
ActaMathematicaeApplicataeSinica(EnglishSeries), 2010, 26 (04) :653-660