Moore-Penrose inverse of an interval matrix and its application

被引:1
作者
Dehghani-Madiseh, Marzieh [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Fac Math Sci & Comp, Dept Math, Ahvaz, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2024年 / 12卷 / 01期
关键词
Inverse matrix; Moore-Penrose inverse; rectangular linear system;
D O I
10.22124/JMM.2023.24972.2219
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of Moore-Penrose inverse of a rectangular interval matrix based on a modified interval arithmetic. We determine the Moore-Penrose inverse in such a way that it satisfies all the four criteria similar to the real case. Also, we use the Moore-Penrose inverse for solving rectangular interval linear systems, algebraically.
引用
收藏
页码:145 / 155
页数:11
相关论文
共 50 条
[21]   Generalization of the Moore-Penrose inverse [J].
Stojanovic, Katarina S. ;
Mosic, Dijana .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (04)
[22]   Extending the Moore-Penrose Inverse [J].
Dincic, Nebojsa C. .
FILOMAT, 2016, 30 (02) :419-428
[23]   An Efficient Matrix Iterative Method for Computing Moore-Penrose Inverse [J].
Kaur, Manpreet ;
Kansal, Munish ;
Kumar, Sanjeev .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (02)
[24]   A generalization of the Moore-Penrose inverse related to matrix subspaces of Cnxm [J].
Suarez, Antonio ;
Gonzalez, Luis .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (02) :514-522
[25]   RANK AND INERTIA OF SUBMATRICES OF THE MOORE-PENROSE INVERSE OF A HERMITIAN MATRIX [J].
Tian, Yongge .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 :226-240
[26]   A family of iterative methods for computing Moore-Penrose inverse of a matrix [J].
Li Weiguo ;
Li Juan ;
Qiao Tiantian .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) :47-56
[27]   ON THE MEAN AND DISPERSION OF THE MOORE-PENROSE GENERALIZED INVERSE OF A WISHART MATRIX [J].
Imori, Shinpei ;
Von Rosen, Dietrich .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2020, 36 :124-133
[28]   Moore-Penrose inverse of the incidence matrix of a distance regular graph [J].
Azimi, A. ;
Bapat, R. B. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 551 :92-103
[29]   Computing the Moore-Penrose inverse of a matrix with a Computer Algebra System [J].
Schmidt, Karsten .
INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2008, 39 (04) :557-562
[30]   On the inverse and Moore-Penrose inverse of resistance matrix of graphs with more general matrix weights [J].
Mondal, Priti Prasanna ;
Bapat, Ravindra B. ;
Atik, Fouzul .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (06) :4833-4853