共 89 条
- [81] Gradient Leakage Attacks in Federated Learning: Research Frontiers, Taxonomy, and Future Directions [J]. IEEE NETWORK, 2024, 38 (02): : 247 - 254
- [82] Fed2: Feature-Aligned Federated Learning [J]. KDD '21: PROCEEDINGS OF THE 27TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2021, : 2066 - 2074
- [83] Yuan H., 2022, What Do We Mean by Generalization in Federated Learning?
- [84] Yuan Honglin, 2022, INT C LEARN REPR
- [85] Zeineldin RA, 2022, arXiv, DOI DOI 10.48550/ARXIV.2212.09310
- [86] Zhang MC, 2021, Arxiv, DOI [arXiv:2012.08565, 10.48550/ARXIV.2012.08565]
- [87] Zhao Y, 2022, Arxiv, DOI [arXiv:1806.00582, DOI 10.1016/J.NEUCOM.2021.07.098]
- [88] Zhu L., 2019, ADV NEURAL INFORM PR, V32
- [89] Federated Medical Image Analysis with Virtual Sample Synthesis [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT III, 2022, 13433 : 728 - 738