Federated brain tumor segmentation: An extensive benchmark

被引:0
作者
Manthe, Matthis [1 ,2 ]
Duffner, Stefan [2 ]
Lartizien, Carole [1 ]
机构
[1] Univ Claude Bernard Lyon 1, INSA Lyon, CREATIS, CNRS,Inserm,U1294,UMR 5220, F-69621 Lyon, France
[2] Univ Lumiere Lyon 2, Univ Claude Bernard Lyon 1, INSA Lyon, Cent Lyon,CNRS,UMR5205,LIRIS, F-69621 Villeurbanne, France
关键词
Deep learning; Federated learning; Medical image segmentation; BraTS; Personalized federated learning; Clustered federated learning;
D O I
10.1016/j.media.2024.103270
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, federated learning has raised increasing interest in the medical image analysis field due to its ability to aggregate multi-center data with privacy-preserving properties. A large amount of federated training schemes have been published, which we categorize into global (one final model), personalized (one model per institution) or hybrid (one model per cluster of institutions) methods. However, their applicability on the recently published Federated Brain Tumor Segmentation 2022 dataset has not been explored yet. We propose an extensive benchmark of federated learning algorithms from all three classes on this task. While standard FedAvg already performs very well, we show that some methods from each category can bring a slight performance improvement and potentially limit the final model(s) bias toward the predominant data distribution of the federation. Moreover, we provide a deeper understanding of the behavior of federated learning on this task through alternative ways of distributing the pooled dataset among institutions, namely an Independent and Identical Distributed (IID) setup, and a limited data setup. Our code is available at (https: //github.com/MatthisManthe/Benchmark_FeTS2022).
引用
收藏
页数:19
相关论文
共 89 条
  • [1] Adewole M, 2023, Arxiv, DOI [arXiv:2305.19369, 10.48550/arXiv.2305.19369, DOI 10.48550/ARXIV.2305.19369]
  • [2] Anthony Reina G., 2022, Phys. Med. Biol., V67
  • [3] Baid U, 2021, Arxiv, DOI [arXiv:2107.02314, DOI 10.48550/ARXIV.2107.02314]
  • [4] Bakas S, 2019, Arxiv, DOI [arXiv:1811.02629, DOI 10.48550/ARXIV.1811.02629]
  • [5] Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features
    Bakas, Spyridon
    Akbari, Hamed
    Sotiras, Aristeidis
    Bilello, Michel
    Rozycki, Martin
    Kirby, Justin S.
    Freymann, John B.
    Farahani, Keyvan
    Davatzikos, Christos
    [J]. SCIENTIFIC DATA, 2017, 4
  • [6] Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
    Baur, Christoph
    Wiestler, Benedikt
    Albarqouni, Shadi
    Navab, Nassir
    [J]. BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 161 - 169
  • [7] Federated disentangled representation learning for unsupervised brain anomaly detection
    Bercea, Cosmin, I
    Wiestler, Benedikt
    Rueckert, Daniel
    Albarqouni, Shadi
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (08) : 685 - +
  • [8] The Liver Tumor Segmentation Benchmark (LiTS)
    Bilic, Patrick
    Christ, Patrick
    Li, Hongwei Bran
    Vorontsov, Eugene
    Ben-Cohen, Avi
    Kaissis, Georgios
    Szeskin, Adi
    Jacobs, Colin
    Mamani, Gabriel Efrain Humpire
    Chartrand, Gabriel
    Lohoefer, Fabian
    Holch, Julian Walter
    Sommer, Wieland
    Hofmann, Felix
    Hostettler, Alexandre
    Lev-Cohain, Naama
    Drozdzal, Michal
    Amitai, Michal Marianne
    Vivanti, Refael
    Sosna, Jacob
    Ezhov, Ivan
    Sekuboyina, Anjany
    Navarro, Fernando
    Kofler, Florian
    Paetzold, Johannes C.
    Shit, Suprosanna
    Hu, Xiaobin
    Lipkova, Jana
    Rempfler, Markus
    Piraud, Marie
    Kirschke, Jan
    Wiestler, Benedikt
    Zhang, Zhiheng
    Huelsemeyer, Christian
    Beetz, Marcel
    Ettlinger, Florian
    Antonelli, Michela
    Bae, Woong
    Bellver, Miriam
    Bi, Lei
    Chen, Hao
    Chlebus, Grzegorz
    Dam, Erik B.
    Dou, Qi
    Fu, Chi-Wing
    Georgescu, Bogdan
    Giro-I-Nieto, Xavier
    Gruen, Felix
    Han, Xu
    Heng, Pheng-Ann
    [J]. MEDICAL IMAGE ANALYSIS, 2023, 84
  • [9] Cardoso M. J., 2022, arXiv, DOI [DOI 10.48550/ARXIV.2211.02701, 10.48550/arXiv.2211.02701]
  • [10] Chen HY., 2020, FEDBE MAKING BAYESIA