Digital in-line holography for wavefront sensing

被引:1
作者
Panahi, Majid [1 ,2 ]
Darudi, Ahmad [1 ]
Moradi, Ali-Reza [2 ,3 ]
机构
[1] Univ Zanjan, Fac Sci, Dept Phys, Zanjan 4537138791, Iran
[2] Inst Adv Studies Basic Sci IASBS, Dept Phys, Zanjan 4513766731, Iran
[3] Inst Res Fundamental Sci IPM, Sch Nano Sci, Tehran 193955531, Iran
关键词
Digital holography; Wavefront sensing; Phase reconstruction; Aberration; Dynamic range; ZERO-ORDER; DYNAMIC-RANGE; SIZE MEASUREMENT; RECONSTRUCTION; MICROSCOPY; SUPPRESSION; ABERRATIONS; SENSOR; PHASE; COMPENSATION;
D O I
10.1016/j.optlastec.2024.111575
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, we use digital in-line holography (DIH) for wavefront sensing. The method is based on recording in-line digital holograms that are formed by the illumination of a dot array grid (DAG) with an aberrated wavefront and comparing them with a reference wavefront taken by an unaberrated illumination. For each sub-aperture of the DAG, the local slope of the aberrated wavefront displaces the position of the reconstructed spot, and, similar to a Shack-Hartmann wavefront sensor, the wavefront is reconstructed by performing an integration over the wave-slopes. The method is validated by simulation and experiment, and the error sources are investigated. The present method is easy-to-implement and inexpensive, yet, provides an adjustable dynamic range without a need to hardware changes. It has the potential to serve as a bench-top device.
引用
收藏
页数:9
相关论文
共 60 条
[1]   Shack-Hartmann wavefront sensor optical dynamic range [J].
Akondi, Vyas ;
Dubra, Alfredo .
OPTICS EXPRESS, 2021, 29 (06) :8417-8429
[2]   Holographic wavefront sensor - Fast sensing, no computing [J].
Andersen, Geoff ;
Ghebremichael, Fassil ;
Gurley, Ken .
PRACTICAL HOLOGRAPHY XXI: MATERIALS AND APPLICATIONS, 2007, 6488
[3]   Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel [J].
Asgari, P. ;
Pourvais, Y. ;
Abdollahi, P. ;
Moradi, A. R. ;
Khamedi, R. ;
Darudi, A. .
MATERIALS & DESIGN, 2017, 125 :109-115
[4]   Imaging performance of microscopy adaptive-optics system using scene-based wavefront sensing [J].
Ashida, Yusuke ;
Honma, Yusuke ;
Miura, Noriaki ;
Shibuya, Takatoshi ;
Kikuchi, Hayao ;
Tamada, Yosuke ;
Kamei, Yasuhiro ;
Matsuda, Atsushi ;
Hattori, Masayuki .
JOURNAL OF BIOMEDICAL OPTICS, 2020, 25 (12)
[5]   Time-averaged in-line digital holographic interferometry for vibration analysis [J].
Asundi, A ;
Singh, VR .
APPLIED OPTICS, 2006, 45 (11) :2391-2395
[6]   A center detection algorithm for Shack-Hartmann wavefront sensor [J].
Baik, Sung-Hoon ;
Park, Seung-Kyu ;
Kim, Cheol-Jung ;
Cha, Byungheon .
OPTICS AND LASER TECHNOLOGY, 2007, 39 (02) :262-267
[7]   Roadmap on Digital Holography-Based Quantitative Phase Imaging [J].
Balasubramani, Vinoth ;
Kujawinska, Malgorzata ;
Allier, Cedric ;
Anand, Vijayakumar ;
Cheng, Chau-Jern ;
Depeursinge, Christian ;
Hai, Nathaniel ;
Juodkazis, Saulius ;
Kalkman, Jeroen ;
Kus, Arkadiusz ;
Lee, Moosung ;
Magistretti, Pierre J. ;
Marquet, Pierre ;
Ng, Soon Hock ;
Rosen, Joseph ;
Park, Yong Keun ;
Ziemczonok, Michal .
JOURNAL OF IMAGING, 2021, 7 (12)
[8]  
Bruno T.L., 1993, Active and Adaptive Optical Components and Systems II, V1920, P328
[9]   Surface proximity effect in sedimentation investigated by digital holographic microscopy [J].
Charsooghi, Mohammad A. ;
Moradi, Ali-Reza .
APPLIED OPTICS, 2018, 57 (07) :B179-B183
[10]   Numerical suppression of zero-order image in digital holography [J].
Chen, Gu-Liang ;
Lin, Ching-Yang ;
Kuo, Ming-Kuei ;
Chang, Chi-Ching .
OPTICS EXPRESS, 2007, 15 (14) :8851-8856