Theoretical and Numerical Studies of Fractional Volterra-Fredholm Integro-Differential Equations in Banach Space

被引:2
作者
Alsa'di, K. [1 ]
Long, N. M. A. Nik [1 ,2 ]
Eshkuvatov, Z. K. [3 ,4 ]
机构
[1] Univ Putra Malaysia, Fac Sci, Dept Math & Stat, Serdang 43400, Selangor, Malaysia
[2] Univ Putra Malaysia, Inst Math Res, Lab Computat Sci & Math Phys, Serdang 43400, Selangor, Malaysia
[3] Univ Malaysia Terengganu, Fac Ocean Engn Technol & Informat, Kuala Terengganu 21030, Malaysia
[4] Natl Univ Uzbekistan, Fac Appl Math & Intellectual Technol, Tashkent, Uzbekistan
来源
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES | 2024年 / 18卷 / 03期
关键词
Caputo fractional derivative; Hyers-Ulam stability; Laplace Adomian decomposition method; CONVERGENCE; EXISTENCE; MODEL;
D O I
10.47836/mjms.18.3.01
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper examines the theoretical, analytical, and approximate solutions of the Caputo fractional Volterra-Fredholm integro-differential equations (FVFIDEs). Utilizing Schaefer's fixed-point theorem, the Banach contraction theorem and the Arzela-Ascoli theorem, we establish some conditions that guarantee the existence and uniqueness of the solution. Furthermore, the stability of the solution is proved using the Hyers-Ulam stability and Gronwall-Bellman's inequality. Additionally, the Laplace Adomian decomposition method (LADM) is employed to obtain the approximate solutions for both linear and non-linear FVFIDEs. The method's efficiency is demonstrated through some numerical examples.
引用
收藏
页码:469 / 489
页数:21
相关论文
共 43 条
[1]   On some new integral inequalities of Gronwall-Bellman-Pachpatte type [J].
Abdeldaim, A. ;
Yakout, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) :7887-7899
[2]   A Fractional Order SITR Model for Forecasting of Transmission of COVID-19: Sensitivity Statistical Analysis [J].
Al-Zahrani, S. M. ;
Elsmih, F. E., I ;
Al-Zahrani, K. S. ;
Saber, S. .
MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (03) :517-536
[3]   Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann-Liouville derivatives [J].
Alam, Mehboob ;
Shah, Dildar .
CHAOS SOLITONS & FRACTALS, 2021, 150
[4]   Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method [J].
Ali, Mohamed R. ;
Hadhoud, Adel R. ;
Srivastava, H. M. .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
[5]   Existence theory and semi-analytical study of non-linear Volterra fractional integro-differential equations [J].
Alrabaiah, Hussam ;
Jamil, Muhammad ;
Shah, Kamal ;
Khan, Rahmat Ali .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (06) :4677-4686
[6]   Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method [J].
Amin, Rohul ;
Ahmad, Hijaz ;
Shah, Kamal ;
Hafeez, M. Bilal ;
Sumelka, W. .
CHAOS SOLITONS & FRACTALS, 2021, 151
[7]   An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet [J].
Amin, Rohul ;
Shah, Kamal ;
Asif, Muhammad ;
Khan, Imran ;
Ullah, Faheem .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 381
[8]   Existence and Stability Analysis for Fractional Differential Equations with Mixed Nonlocal Conditions [J].
Asawasamrit, Suphawat ;
Nithiarayaphaks, Woraphak ;
Ntouyas, Sotiris K. ;
Tariboon, Jessada .
MATHEMATICS, 2019, 7 (02)
[9]   On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method [J].
Baleanu, Dumitru ;
Aydogn, Seher Melike ;
Mohammadi, Hakimeh ;
Rezapour, Shahram .
ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) :3029-3039
[10]  
Benchohra M., 2023, Advanced Topics in Fractional Differential Equations: A Fixed Point Approach, P35