Student Models for a Risky Asset with Dependence: Option Pricing and Greeks

被引:1
作者
Leonenko, Nikolai N. [1 ]
Liu, Anqi [1 ]
Shchestyuk, Nataliya [2 ,3 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, Wales
[2] Orebro Univ, Sch Business, Orebro, Sweden
[3] Natl Univ Kyiv, Mohyla Acad, Dept Math, Kiev, Ukraine
基金
巴西圣保罗研究基金会;
关键词
option pricing; fractal activity time; student processes; dependence structure; supOU processes; delta hedging; ACTIVITY TIME PROCESS; WEAK-CONVERGENCE; SIMULATION;
D O I
10.17713/ajs.v54i1.1952
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose several new models in finance known as the Fractal Activity Time Geometric Brownian Motion (FATGBM) models with Student marginals. We summarize four models that construct stochastic processes of underlying prices with short-range and long-range dependencies. We derive solutions of option Greeks and compare with those in the Black-Scholes model. We analyse performance of delta hedging strategy using simulated time series data and verify that hedging errors are biased particularly for long-range dependence cases. We also apply underlying model calibration on S&P 500 index (SPX) and the U.S./Euro rate, and implement delta hedging on SPX options.
引用
收藏
页码:138 / 165
页数:28
相关论文
共 50 条
[41]   Barrier Option Pricing in Regime Switching Models with Rebates [J].
Zhao, Yue-xu ;
Bao, Jia-yong .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2024, 40 (03) :849-861
[42]   An empirical comparison of the performance of alternative option pricing models [J].
Ferreira, E ;
Gago, M ;
León, A ;
Rubio, G .
INVESTIGACIONES ECONOMICAS, 2005, 29 (03) :483-523
[43]   Microstructural biases in empirical tests of option pricing models [J].
Dennis, Patrick ;
Mayhew, Stewart .
REVIEW OF DERIVATIVES RESEARCH, 2009, 12 (03) :169-191
[44]   Option pricing with asymmetric heteroskedastic normal mixture models [J].
Rombouts, Jeroen V. K. ;
Stentoft, Lars .
INTERNATIONAL JOURNAL OF FORECASTING, 2015, 31 (03) :635-650
[45]   Implied parameter estimation for jump diffusion option pricing models: Pricing accuracy and the role of loss and evaluation functions [J].
Hilliard, Jimmy E. ;
Hilliard, Jitka ;
Ngo, Julie T. D. .
JOURNAL OF COMMODITY MARKETS, 2024, 35
[46]   Pricing multi-asset option problems: a Chebyshev pseudo-spectral method [J].
Fazlollah Soleymani .
BIT Numerical Mathematics, 2019, 59 :243-270
[47]   Pricing multi-asset option problems: a Chebyshev pseudo-spectral method [J].
Soleymani, Fazlollah .
BIT NUMERICAL MATHEMATICS, 2019, 59 (01) :243-270
[48]   Log Student's t-distribution-based option sensitivities: Greeks for the Gosset formulae [J].
Cassidy, Daniel T. ;
Hamp, Michael J. ;
Ouyed, Rachid .
QUANTITATIVE FINANCE, 2013, 13 (08) :1289-1302
[49]   Option Pricing Under Multifractional Process and Long-Range Dependence [J].
Mattera, Raffaele ;
Di Sciorio, Fabrizio .
FLUCTUATION AND NOISE LETTERS, 2021, 20 (01)
[50]   AMERICAN OPTION VALUATION: IMPLIED CALIBRATION OF GARCH PRICING MODELS [J].
Weber, Michael ;
Prokopczuk, Marcel .
JOURNAL OF FUTURES MARKETS, 2011, 31 (10) :971-994