Machine learning for data-centric epidemic forecasting

被引:2
|
作者
Rodriguez, Alexander [1 ,2 ]
Kamarthi, Harshavardhan [1 ]
Agarwal, Pulak [1 ]
Ho, Javen [1 ]
Patel, Mira [1 ]
Sapre, Suchet [1 ]
Prakash, B. Aditya [1 ]
机构
[1] Georgia Inst Technol, Coll Comp, Atlanta, GA 30332 USA
[2] Univ Michigan, Comp Sci & Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
UNITED-STATES; INFLUENZA; PREDICTION; MODEL;
D O I
10.1038/s42256-024-00895-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The COVID-19 pandemic emphasized the importance of epidemic forecasting for decision makers in multiple domains, ranging from public health to the economy. Forecasting epidemic progression is a non-trivial task due to multiple confounding factors, such as human behaviour, pathogen dynamics and environmental conditions. However, the surge in research interest and initiatives from public health and funding agencies has fuelled the availability of new data sources that capture previously unobservable aspects of disease spread, paving the way for a spate of 'data-centred' computational solutions that show promise for enhancing our forecasting capabilities. Here we discuss various methodological and practical advances and introduce a conceptual framework to navigate through them. First we list relevant datasets, such as symptomatic online surveys, retail and commerce, mobility and genomics data. Next we consider methods, focusing on recent data-driven statistical and deep learning-based methods, as well as hybrid models that combine domain knowledge of mechanistic models with the flexibility of statistical approaches. We also discuss experiences and challenges that arise in the real-world deployment of these forecasting systems, including decision-making informed by forecasts. Finally, we highlight some challenges and open problems found across the forecasting pipeline to enable robust future pandemic preparedness. Forecasting epidemic progression is a complex task influenced by various factors, including human behaviour, pathogen dynamics and environmental conditions. Rodr & iacute;guez, Kamarthi and colleagues provide a review of machine learning methods for epidemic forecasting from a data-centric computational perspective.
引用
收藏
页码:1122 / 1131
页数:10
相关论文
共 50 条
  • [41] Data-centric automated data mining
    Campos, MM
    Stengard, PJ
    Milenova, BL
    ICMLA 2005: FOURTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2005, : 97 - 104
  • [42] DLIO: A Data-Centric Benchmark for Scientific Deep Learning Applications
    Devarajan, Hariharan
    Zheng, Huihuo
    Kougkas, Anthony
    Sun, Xian-He
    Vishwanath, Venkatram
    21ST IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2021), 2021, : 81 - 91
  • [43] A Data-Centric Approach to improve performance of deep learning models
    Bhatt, Nikita
    Bhatt, Nirav
    Prajapati, Purvi
    Sorathiya, Vishal
    Alshathri, Samah
    El-Shafai, Walid
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [44] RDF Data-Centric Storage
    Levandoski, Justin J.
    Mokbel, Mohamed F.
    2009 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, VOLS 1 AND 2, 2009, : 911 - 918
  • [45] DLProv: A Data-Centric Support for Deep Learning Workflow Analyses
    Pina, Debora
    Chapman, Adriane
    Kunstmann, Liliane
    de Oliveira, Daniel
    Mattoso, Marta
    PROCEEDINGS OF THE 8TH WORKSHOP ON DATA MANAGEMENT FOR END-TO-END MACHINE LEARNING, DEEM 2024, 2024,
  • [46] A Data-Centric Approach for Reducing Carbon Emissions in Deep Learning
    Anselmo, Martin
    Vitali, Monica
    ADVANCED INFORMATION SYSTEMS ENGINEERING, CAISE 2023, 2023, 13901 : 123 - 138
  • [47] Data-Centric Learning from Unlabeled Graphs with Diffusion Model
    Liu, Gang
    Inae, Eric
    Zhao, Tong
    Xu, Jiaxin
    Luo, Tengfei
    Jiang, Meng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] IoT-Driven Enhancement of Hydroponic Fertilization Efficiency Through Machine Learning: A Data-Centric Strategy
    Patel, Juhi
    Bhatt, Tejaskumar
    Joshi, Aditi
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 298 - 302
  • [49] The Principles of Data-Centric AI
    Jarrahi, Mohammad Hossein
    Memariani, Ali
    Guha, Shion
    COMMUNICATIONS OF THE ACM, 2023, 66 (08) : 84 - 92
  • [50] Unpacking data-centric geotechnics
    Phoon, Kok-Kwang
    Ching, Jianye
    Cao, Zijun
    UNDERGROUND SPACE, 2022, 7 (06) : 967 - 989