Light-trapping by wave interference in intermediate-thickness silicon solar cells

被引:1
作者
Bhattacharya, Sayak [1 ]
John, Sajeev [2 ]
机构
[1] Indraprastha Inst Informat Technol Delhi, Dept Elect & Commun Engn, New Delhi 110020, India
[2] Univ Toronto, Dept Phys, 60 St George St, Toronto, ON M5S 1A7, Canada
来源
OPTICS EXPRESS | 2024年 / 32卷 / 17期
关键词
PHOTONIC CRYSTAL; LIMITING EFFICIENCY; ABSORPTION; SI; CONTACTS;
D O I
10.1364/OE.530718
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The power conversion efficiency of crystalline silicon (c - Si) solar cells have witnessed a 2.1% increase over the last 25 years due to improved carrier transport. Recently, the conversion efficiency of c - Si cell has reached 27.1% but falls well below the Shockley-Queisser limit as well as the statistical ray-optics based 29.43% limit. Further improvement of conversion efficiency requires reconsideration of traditional ray-trapping strategies for sunlight absorption. Wave-interference based light-trapping in photonic crystals (PhC) provides the opportunity to break the ray-optics based 4n(2) limit and offers the possibility of conversion efficiencies beyond 29.43% in c - Si cells. Using finite difference time domain simulations of Maxwell's equations, we demonstrate photo-current densities above the 4n(2) limit in 50 - 300 mu m-thick inverted pyramid silicon PhCs, with lattice constant 3.1 mu m. Our 150 mu m-thick PhC design yields a maximum achievable photo-current density (MAPD) of 45.22mA/cm(2). We consider anti-reflection coatings and surface passivation consisting of SiO2-SiNx-Al2O3 stacks. Our design optimization shows that a 80 - 120 - 150nm stack leads to slightly better solar light trapping in photonic crystal cells with thicknesses <50<mu>m, whereas the 80 - 40 - 20nm stack performs better for cells with thicknesses >100 mu m. We show that replacing SiNx with SiC may improve the MAPD for PhC cells thinner than 100 mu m. For a fixed lattice constant of 3.1 mu m, we find no significant improvement in the solar absorption for 50 and 100 mu m-thick cells relative to a 15 mu m cell. A substantial improvement in the MAPD is observed for the 150 mu m cell, but there is practically no improvement in the solar light absorption beyond 150 mu m thickness. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:29795 / 29816
页数:22
相关论文
共 58 条
[51]   Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J].
Tian, Bozhi ;
Zheng, Xiaolin ;
Kempa, Thomas J. ;
Fang, Ying ;
Yu, Nanfang ;
Yu, Guihua ;
Huang, Jinlin ;
Lieber, Charles M. .
NATURE, 2007, 449 (7164) :885-U8
[52]   LIMITING EFFICIENCY OF SILICON SOLAR-CELLS [J].
TIEDJE, T ;
YABLONOVITCH, E ;
CODY, GD ;
BROOKS, BG .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1984, 31 (05) :711-716
[53]   Silicon nanowire solar cells [J].
Tsakalakos, L. ;
Balch, J. ;
Fronheiser, J. ;
Korevaar, B. A. ;
Sulima, O. ;
Rand, J. .
APPLIED PHYSICS LETTERS, 2007, 91 (23)
[54]  
Valuev I, 2007, LECT NOTES COMPUT SC, V4707, P213
[55]   INHIBITED SPONTANEOUS EMISSION IN SOLID-STATE PHYSICS AND ELECTRONICS [J].
YABLONOVITCH, E .
PHYSICAL REVIEW LETTERS, 1987, 58 (20) :2059-2062
[56]   Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% [J].
Yoshikawa, Kunta ;
Kawasaki, Hayato ;
Yoshida, Wataru ;
Irie, Toru ;
Konishi, Katsunori ;
Nakano, Kunihiro ;
Uto, Toshihiko ;
Adachi, Daisuke ;
Kanematsu, Masanori ;
Uzu, Hisashi ;
Yamamoto, Kenji .
NATURE ENERGY, 2017, 2 (05)
[57]  
Zhao JH, 1999, PROG PHOTOVOLTAICS, V7, P471, DOI 10.1002/(SICI)1099-159X(199911/12)7:6<471::AID-PIP298>3.0.CO
[58]  
2-7