Localized Plasmonic Structured Illumination Microscopy Using Hybrid Inverse Design

被引:5
作者
Wu, Qianyi [1 ]
Xu, Yihao [2 ]
Zhao, Junxiang [1 ]
Liu, Yongmin [2 ,3 ]
Liu, Zhaowei [1 ,4 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, La Jolla, CA 92093 USA
[2] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
[3] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
[4] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
Deep learning; Genetic algorithms; Photonicsinverse design; Super-resolution microscopy; Plasmonics; Structured illumination microscopy; ARTIFICIAL-INTELLIGENCE; GENETIC-ALGORITHM; RESOLUTION LIMIT; NANOPHOTONICS; PHOTONICS;
D O I
10.1021/acs.nanolett.4c03069
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Super-resolution fluorescence imaging has offered unprecedented insights and revolutionized our understanding of biology. In particular, localized plasmonic structured illumination microscopy (LPSIM) achieves video-rate super-resolution imaging with similar to 50 nm spatial resolution by leveraging subdiffraction-limited nearfield patterns generated by plasmonic nanoantenna arrays. However, the conventional trial-and-error design process for LPSIM arrays is time-consuming and computationally intensive, limiting the exploration of optimal designs. Here, we propose a hybrid inverse design framework combining deep learning and genetic algorithms to refine LPSIM arrays. A population of designs is evaluated using a trained convolutional neural network, and a multiobjective optimization method optimizes them through iteration and evolution. Simulations demonstrate that the optimized LPSIM substrate surpasses traditional substrates, exhibiting higher reconstruction accuracy, robustness against noise, and increased tolerance for fewer measurements. This framework not only proves the efficacy of inverse design for tailoring LPSIM substrates but also opens avenues for exploring new plasmonic nanostructures in imaging applications.
引用
收藏
页码:11581 / 11589
页数:9
相关论文
共 55 条
[1]   Multifunctional Metasurface Design with a Generative Adversarial Network [J].
An, Sensong ;
Zheng, Bowen ;
Tang, Hong ;
Shalaginov, Mikhail Y. ;
Zhou, Li ;
Li, Hang ;
Kang, Myungkoo ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Fowler, Clayton ;
Zhang, Hualiang .
ADVANCED OPTICAL MATERIALS, 2021, 9 (05)
[2]   Roadmap on Label-Free Super-Resolution Imaging [J].
Astratov, Vasily N. ;
Ben Sahel, Yair ;
Eldar, Yonina C. ;
Huang, Luzhe ;
Ozcan, Aydogan ;
Zheludev, Nikolay ;
Zhao, Junxiang ;
Burns, Zachary ;
Liu, Zhaowei ;
Narimanov, Evgenii ;
Goswami, Neha ;
Popescu, Gabriel ;
Pfitzner, Emanuel ;
Kukura, Philipp ;
Hsiao, Yi-Teng ;
Hsieh, Chia-Lung ;
Abbey, Brian ;
Diaspro, Alberto ;
LeGratiet, Aymeric ;
Bianchini, Paolo ;
Shaked, Natan T. ;
Simon, Bertrand ;
Verrier, Nicolas ;
Debailleul, Matthieu ;
Haeberle, Olivier ;
Wang, Sheng ;
Liu, Mengkun ;
Bai, Yeran ;
Cheng, Ji-Xin ;
Kariman, Behjat S. ;
Fujita, Katsumasa ;
Sinvani, Moshe ;
Zalevsky, Zeev ;
Li, Xiangping ;
Huang, Guan-Jie ;
Chu, Shi-Wei ;
Tzang, Omer ;
Hershkovitz, Dror ;
Cheshnovsky, Ori ;
Huttunen, Mikko J. ;
Stanciu, Stefan G. ;
Smolyaninova, Vera N. ;
Smolyaninov, Igor I. ;
Leonhardt, Ulf ;
Sahebdivan, Sahar ;
Wang, Zengbo ;
Luk'yanchuk, Boris ;
Wu, Limin ;
Maslov, Alexey V. ;
Jin, Boya .
LASER & PHOTONICS REVIEWS, 2023, 17 (12)
[3]   Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm [J].
Ayuk, R. ;
Giovannini, H. ;
Jost, A. ;
Mudry, E. ;
Girard, J. ;
Mangeat, T. ;
Sandeau, N. ;
Heintzmann, R. ;
Wicker, K. ;
Belkebir, K. ;
Sentenac, A. .
OPTICS LETTERS, 2013, 38 (22) :4723-4726
[4]   Imaging intracellular fluorescent proteins at nanometer resolution [J].
Betzig, Eric ;
Patterson, George H. ;
Sougrat, Rachid ;
Lindwasser, O. Wolf ;
Olenych, Scott ;
Bonifacino, Juan S. ;
Davidson, Michael W. ;
Lippincott-Schwartz, Jennifer ;
Hess, Harald F. .
SCIENCE, 2006, 313 (5793) :1642-1645
[5]   Localized plasmonic structured illumination microscopy with gaps in spatial frequencies [J].
Bezryadina, Anna ;
Zhao, Junxiang ;
Xia, Yang ;
Ul Lee, Yeon ;
Zhang, Xiang ;
Liu, Zhaowei .
OPTICS LETTERS, 2019, 44 (11) :2915-2918
[6]   High Spatiotemporal Resolution Imaging with Localized Plasmonic Structured Illumination Microscopy [J].
Bezryadina, Anna ;
Zhao, Junxiang ;
Xia, Yang ;
Zhang, Xiang ;
Liu, Zhaowei .
ACS NANO, 2018, 12 (08) :8248-8254
[7]   Pymoo: Multi-Objective Optimization in Python']Python [J].
Blank, Julian ;
Deb, Kalyanmoy .
IEEE ACCESS, 2020, 8 :89497-89509
[8]   GREEN FLUORESCENT PROTEIN AS A MARKER FOR GENE-EXPRESSION [J].
CHALFIE, M ;
TU, Y ;
EUSKIRCHEN, G ;
WARD, WW ;
PRASHER, DC .
SCIENCE, 1994, 263 (5148) :802-805
[9]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[10]   Hybrid inverse design of photonic structures by combining optimization methods with neural networks [J].
Deng, Lin ;
Xu, Yihao ;
Liu, Yongmin .
PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2022, 52