An analogue of Kida's formula for elliptic curves with additive reduction

被引:0
作者
Ray, Anwesh [1 ]
Shingavekar, Pratiksha [1 ]
机构
[1] Chennai Math Inst, SIPCOT IT Pk, Kelambakkam 603103, Tamil Nadu, India
关键词
Rank stability; Iwasawa theory of elliptic curves; Additive reduction; Kida's formula; ABELIAN-VARIETIES; RATIONAL POINTS; IWASAWA THEORY; VALUES; EXTENSIONS;
D O I
10.1007/s11139-024-00920-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Iwasawa theory of p-primary Selmer groups of elliptic curves E over a number field K. Assume that E has additive reduction at the primes of K above p. In this context, we prove that the Iwasawa invariants satisfy an analogue of the Riemann-Hurwitz formula. This generalizes a result of Hachimori and Matsuno. We apply our results to study rank stability questions for elliptic curves in prime cyclic extensions of Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Q}$$\end{document}. These extensions are ordered by their absolute discriminant and we prove an asymptotic lower bound for the density of extensions in which the Iwasawa invariants as well as the rank of the elliptic curve is stable.
引用
收藏
页码:857 / 883
页数:27
相关论文
共 26 条
[1]   Kummer theory for abelian varieties over local fields [J].
Coates, J ;
Greenberg, R .
INVENTIONES MATHEMATICAE, 1996, 124 (1-3) :129-174
[2]   On the vanishing of twisted L-functions of elliptic curves [J].
David, C ;
Fearnley, J ;
Kisilevsky, H .
EXPERIMENTAL MATHEMATICS, 2004, 13 (02) :185-198
[3]  
David C., 2007, London Math. Soc. Lecture Note Series, V341, P247
[4]   Iwasawa theory for elliptic curves at unstable primes [J].
Delbourgo, D .
COMPOSITIO MATHEMATICA, 1998, 113 (02) :123-153
[5]   IWASAWA INVARIANT MU-P VANISHES FOR ABELIAN NUMBER FIELDS [J].
FERRERO, B ;
WASHINGTON, LC .
ANNALS OF MATHEMATICS, 1979, 109 (02) :377-395
[6]  
Greenberg R, 1999, LECT NOTES MATH, V1716, P51
[7]  
Greenberg R., 1999, IAS PARK CITY MATH S, V9, P407
[8]  
Hachimori Y, 1999, J ALGEBRAIC GEOM, V8, P581
[9]   Euler characteristics as invariants of Iwasawa modules [J].
Howson, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 :634-658
[10]   REMARK ON RATIONAL POINTS OF ABELIAN VARIETIES WITH VALUES IN CYCLOTOMIC ZP-EXTENSIONS [J].
IMAI, H .
PROCEEDINGS OF THE JAPAN ACADEMY, 1975, 51 (01) :12-16