Predicting systemic risk in financial systems using Deep Graph Learning

被引:6
|
作者
Balmaseda, Vicente [1 ,2 ]
Coronado, Maria [3 ]
de Cadenas-Santiago, Gonzalo [4 ]
机构
[1] Univ Pontificia Comillas, Sch Engn, ICAI, Alberto Aguilera 23, Madrid 28015, Spain
[2] Fac Econ & Business Adm, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[3] Univ Pontificia Comillas, Fac Econ & Business, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[4] MAPFRE Econ, Econ Res Dept, Carretera Pozuelo 52,ed1, Majadahonda 28222, Madrid, Spain
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2023年 / 19卷
关键词
Graph neural networks (GNN); Financial networks modeling; Model selection; Neural networks; Label regression; Network simulation; EXPOSURES; MODELS;
D O I
10.1016/j.iswa.2023.200240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Systemic risk is the risk of infection from an individual financial entity to the financial system due to existing interconnections. Having powerful tools to analyze and predict systemic risk in large financial networks is essential to ensure the stability of the financial system, avoiding the negative externalities derived from the failure of a systemically important financial institution. In this context, Machine Learning (ML) has proved to be a useful tool thanks to its ability to deal with complex relations. However, traditional techniques are limited in their use of the interactions between entities and the network structure, which has been shown to be of great importance for systemic risk. Thus, this work proposes Graph Neural Networks (GNNs) for systemic risk analysis. GNNs use the network structure and feature information to deal with large-scale financial networks, providing the benefits of ML while using all the available information (node inter-relations and node, edge, and graph features). We also present C2R, an approach to reduce the pre-labeling effort for costly systemic risk metrics by pre-labeling into a small number of classes while predicting continuous risk scores. We have tested GNNs against traditional ML in classifying entities by systemic risk importance in two different networks, comparing their generalization capabilities with different amounts of available data. GNNs achieve a 94% and 15% Matthew's Correlation Coefficient (MCC) average percentage increase compared to ML, achieving statistically significant MCC improvements in most scenarios. When combining C2R with GNNs to predict the systemic risk quantile from the class labels, the models achieve statistically significant improvements in the quantile RMSE. From our experiments, we can confirm that GNN models are better suited for systemic risk prediction on financial networks and should be preferred over traditional Machine Learning. The results obtained also confirm the fact that the network structure and the features of the relations (edge features) hold useful information for our task.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] From liquidity risk to systemic risk: A use of knowledge graph
    Chen, Ren-Raw
    Zhang, Xiaohu
    JOURNAL OF FINANCIAL STABILITY, 2024, 70
  • [42] Internet Financial Fraud Detection Based on Graph Learning
    Li, Ranran
    Liu, Zhaowei
    Ma, Yuanqing
    Yang, Dong
    Sun, Shuaijie
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (03) : 1394 - 1401
  • [43] A deep learning-based framework for predicting pork preference
    Ko, Eunyoung
    Jeong, Kyungchang
    Oh, Hongseok
    Park, Yunhwan
    Choi, Jungseok
    Lee, Euijong
    CURRENT RESEARCH IN FOOD SCIENCE, 2023, 6
  • [44] Deep learning in predicting cryptocurrency volatility
    D'Amato, Valeria
    Levantesi, Susanna
    Piscopo, Gabriella
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 596
  • [45] Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models
    Chen, Cheng
    Fan, Lei
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023,
  • [46] Transfer Learning for Deep Learning on Graph-Structured Data
    Lee, Jaekoo
    Kim, Hyunjae
    Lee, Jongsun
    Yoon, Sungroh
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2154 - 2160
  • [47] RoseNet: Predicting Energy Metrics of Double InDel Mutants Using Deep Learning
    Coffland, Sarah
    Christensen, Katie
    Jagodzinski, Filip
    Hutchinson, Brian
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [48] Predicting Chemical Carcinogens Using a Hybrid Neural Network Deep Learning Method
    Limbu, Sarita
    Dakshanamurthy, Sivanesan
    SENSORS, 2022, 22 (21)
  • [49] Predicting sex from retinal fundus photographs using automated deep learning
    Korot, Edward
    Pontikos, Nikolas
    Liu, Xiaoxuan
    Wagner, Siegfried K.
    Faes, Livia
    Huemer, Josef
    Balaskas, Konstantinos
    Denniston, Alastair K.
    Khawaja, Anthony
    Keane, Pearse A.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [50] Predicting the compressive strength of CFRP-confined concrete using deep learning
    Benzaamia, Ali
    Ghrici, Mohamed
    Rebouh, Redouane
    Pilakoutas, Kypros
    Asteris, Panagiotis G.
    ENGINEERING STRUCTURES, 2024, 319