Predicting systemic risk in financial systems using Deep Graph Learning

被引:6
|
作者
Balmaseda, Vicente [1 ,2 ]
Coronado, Maria [3 ]
de Cadenas-Santiago, Gonzalo [4 ]
机构
[1] Univ Pontificia Comillas, Sch Engn, ICAI, Alberto Aguilera 23, Madrid 28015, Spain
[2] Fac Econ & Business Adm, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[3] Univ Pontificia Comillas, Fac Econ & Business, ICADE, Alberto Aguilera 23, Madrid 28015, Spain
[4] MAPFRE Econ, Econ Res Dept, Carretera Pozuelo 52,ed1, Majadahonda 28222, Madrid, Spain
来源
INTELLIGENT SYSTEMS WITH APPLICATIONS | 2023年 / 19卷
关键词
Graph neural networks (GNN); Financial networks modeling; Model selection; Neural networks; Label regression; Network simulation; EXPOSURES; MODELS;
D O I
10.1016/j.iswa.2023.200240
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Systemic risk is the risk of infection from an individual financial entity to the financial system due to existing interconnections. Having powerful tools to analyze and predict systemic risk in large financial networks is essential to ensure the stability of the financial system, avoiding the negative externalities derived from the failure of a systemically important financial institution. In this context, Machine Learning (ML) has proved to be a useful tool thanks to its ability to deal with complex relations. However, traditional techniques are limited in their use of the interactions between entities and the network structure, which has been shown to be of great importance for systemic risk. Thus, this work proposes Graph Neural Networks (GNNs) for systemic risk analysis. GNNs use the network structure and feature information to deal with large-scale financial networks, providing the benefits of ML while using all the available information (node inter-relations and node, edge, and graph features). We also present C2R, an approach to reduce the pre-labeling effort for costly systemic risk metrics by pre-labeling into a small number of classes while predicting continuous risk scores. We have tested GNNs against traditional ML in classifying entities by systemic risk importance in two different networks, comparing their generalization capabilities with different amounts of available data. GNNs achieve a 94% and 15% Matthew's Correlation Coefficient (MCC) average percentage increase compared to ML, achieving statistically significant MCC improvements in most scenarios. When combining C2R with GNNs to predict the systemic risk quantile from the class labels, the models achieve statistically significant improvements in the quantile RMSE. From our experiments, we can confirm that GNN models are better suited for systemic risk prediction on financial networks and should be preferred over traditional Machine Learning. The results obtained also confirm the fact that the network structure and the features of the relations (edge features) hold useful information for our task.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Predicting process behaviour using deep learning
    Evermann, Joerg
    Rehse, Jana-Rebecca
    Fettke, Peter
    DECISION SUPPORT SYSTEMS, 2017, 100 : 129 - 140
  • [2] A survey on deep learning for financial risk prediction
    Peng, Kuashuai
    Yan, Guofeng
    QUANTITATIVE FINANCE AND ECONOMICS, 2021, 5 (04): : 716 - 737
  • [3] Predicting systemic risk of banks: a machine learning approach
    Kumar, Gaurav
    Rahman, Molla Ramizur
    Rajverma, Abhinav
    Misra, Arun Kumar
    JOURNAL OF MODELLING IN MANAGEMENT, 2024, 19 (02) : 441 - 469
  • [4] Forecasting Financial Markets using Deep Learning
    Zanc, Razvan
    Cioara, Tudor
    Anghel, Ionut
    2019 IEEE 15TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING (ICCP 2019), 2019, : 459 - 466
  • [5] Predicting systemic financial crises with recurrent neural networks
    Tolo, Eero
    JOURNAL OF FINANCIAL STABILITY, 2020, 49
  • [6] Predicting the Landscape of Recombination Using Deep Learning
    Adrion, Jeffrey R.
    Galloway, Jared G.
    Kern, Andrew D.
    MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (06) : 1790 - 1808
  • [7] Predicting equilibrium distributions for molecular systems with deep learning
    Zheng, Shuxin
    He, Jiyan
    Liu, Chang
    Shi, Yu
    Lu, Ziheng
    Feng, Weitao
    Ju, Fusong
    Wang, Jiaxi
    Zhu, Jianwei
    Min, Yaosen
    Zhang, He
    Tang, Shidi
    Hao, Hongxia
    Jin, Peiran
    Chen, Chi
    Noe, Frank
    Liu, Haiguang
    Liu, Tie-Yan
    NATURE MACHINE INTELLIGENCE, 2024, 6 (05) : 558 - 567
  • [8] POSTER: A Deep Learning Method for Fraud Detection in Financial Systems
    Ogrek, Mahmut
    Ogrek, Eyup
    Bahtiyar, Serif
    PROCEEDINGS OF THE 2019 CONFERENCE ON SECURITY AND PRIVACY IN WIRELESS AND MOBILE NETWORKS (WISEC '19), 2019, : 298 - 299
  • [9] Using Active Learning Methods for Predicting Fraudulent Financial Statements
    Karlos, Stamatis
    Kostopoulos, Georgios
    Kotsiantis, Sotiris
    Tampakas, Vassilis
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2017, 2017, 744 : 351 - 362
  • [10] Predicting water quality in municipal water management systems using a hybrid deep learning model
    Luo, Wenxian
    Huang, Leijun
    Shu, Jiabin
    Feng, Hailin
    Guo, Wenjie
    Xia, Kai
    Fang, Kai
    Wang, Wei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133