3D printing applications in smart farming and food processing

被引:5
|
作者
Padhiary, Mrutyunjay [1 ]
Barbhuiya, Javed Akhtar [1 ]
Roy, Dipak [2 ]
Roy, Pankaj [1 ]
机构
[1] Assam Univ, Dept Agr Engn, TSSOT, Silchar 788011, Assam, India
[2] Tezpur Univ, Dept Elect & Commun Engn, Tezpur, Assam, India
来源
关键词
3D printing; Smart farming; Food processing; Personalized nutrition; Sustainable agriculture; DESIGN; TECHNOLOGIES; MECHANISM;
D O I
10.1016/j.atech.2024.100553
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Additive manufacturing, also known as 3D printing, is an amazing innovation with a wide range of uses in intelligent agriculture and food processing. Along with adjustable farming equipment and autonomous agricultural instruments like drones and robots, it offers real-time data on plant health, nutrient levels, and soil state. 3D printing has reinvented food processing by enabling personalized nutrition solutions, particularly in the field of medicinal nutrition. It also makes it possible to alter the textures and structures of food, creating novel sensory experiences and better-quality goods. 3D printing contributes to sustainable food production by reducing food waste (10-30 %) and using alternative protein sources. According to the study, AI and 3D-assisted IoT sensors can help increase yield by 10 % to 15 % while significantly reducing crop deterioration. They can also help reduce water usage by 20 % to 25 %, labor requirements by 20 % to 30 %, and overall power consumption by 20 %. However, high costs, complex technical and design knowledge, and limitations on production speed and scale are obstacles to broader use. It's also necessary to handle safety and regulatory concerns. 3D printing has a promising future in various fields thanks to advancements in bioprinting, multifunctional materials, blockchain, and artificial intelligence integration. These advancements could boost 3D printing's potential and result in higher output, more sustainable practices, and higher-quality products.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Status of Food Additives in 3D Food Printing
    Zhou S.
    Yang X.
    Li C.
    Wang M.
    Liu Q.
    Wang X.
    Lang Y.
    Science and Technology of Food Industry, 2023, 44 (06) : 41 - 48
  • [22] 3D Printing for Dental Applications
    Figueiredo-Pina, Celio Gabriel
    Serro, Ana Paula
    MATERIALS, 2023, 16 (14)
  • [23] 3D Printing for Electrocatalytic Applications
    Lee, Chong-Yong
    Taylor, Adam C.
    Nattestad, Andrew
    Beirne, Stephen
    Wallace, Gordon G.
    JOULE, 2019, 3 (08) : 1835 - 1849
  • [24] 3D Printing in Medical Applications
    Sun, Zhonghua
    CURRENT MEDICAL IMAGING, 2021, 17 (07) : 811 - 813
  • [25] Pharmaceutical Applications of 3D Printing
    Chen, Grona
    Xu, Yihua
    Kwok, Philip Chi Lip
    Kang, Lifeng
    ADDITIVE MANUFACTURING, 2020, 34
  • [26] Endodontic applications of 3D printing
    Anderson, J.
    Wealleans, J.
    Ray, J.
    INTERNATIONAL ENDODONTIC JOURNAL, 2018, 51 (09) : 1005 - 1018
  • [27] Applications of 3D printing in aging
    Ma, Meng
    Gu, Jun
    Wang, Dong-An
    Bi, Siwei
    Liu, Ruiqi
    Zhang, Xiaosheng
    Yang, Jing
    Zhang, Yi
    INTERNATIONAL JOURNAL OF BIOPRINTING, 2023, 9 (04)
  • [28] Clinical Applications of 3D Printing
    Ehler, E.
    Remmes, N.
    Baker, J.
    Cunha, J.
    MEDICAL PHYSICS, 2015, 42 (06) : 3551 - 3552
  • [29] Clinical Applications of 3D Printing
    Anderson, Paul A.
    SPINE, 2017, 42 (07) : S30 - S31
  • [30] Applications of 3D printing in healthcare
    Dodziuk, Helena
    KARDIOCHIRURGIA I TORAKOCHIRURGIA POLSKA-POLISH JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2016, 13 (03) : 283 - 293