Testing the transferability of machine learning techniques for determining photometric redshifts of galaxy catalogue populations

被引:0
作者
Janiurek, Lara [1 ,2 ]
Hendry, Martin A. [1 ]
Speirits, Fiona C. [1 ]
机构
[1] Univ Glasgow, Sch Phys & Astron, SUPA, Univ Ave, Glasgow G12 8QQ, Scotland
[2] Univ Strathclyde, Dept Phys, John Anderson Bldg,107 Rottenrow East, Glasgow G4 0NG, Scotland
基金
英国科学技术设施理事会;
关键词
catalogues; surveys; galaxies: distances and redshifts; EVOLUTION;
D O I
10.1093/mnras/stae1901
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, the random forest algorithm galpro is implemented to generate photometric redshift posteriors, and its performance when trained and then applied to data from another survey is investigated. The algorithm is initially calibrated using a truth data set compiled from the Dark Energy Spectroscopic Instrument (DESI) Legacy survey. We find that the testing and training data sets must have very similar redshift distributions, with the range of their photometric data overlapping by at least 90 per cent in the appropriate photometric bands in order for the training data to be applicable to the testing data. galpro is again trained using the DESI data set and then applied to a sample drawn from the Panoramic Survey Telescope and Rapid Response System survey, to explore whether galpro can be trained using a trusted data set and applied to an entirely new survey, albeit one that uses a different magnitude system for its photometric bands, thus requiring careful conversion of the measured magnitudes. The results of this further test indicate that galpro does not produce accurate photometric redshift posteriors for the new survey, even where the distribution of redshifts for the two data sets overlaps by over 90 per cent. We conclude that the photometric redshifts generated by galpro are not suitable for generating estimates of photometric redshifts and their posterior distribution functions when applied to an entirely new survey, particularly one that uses a different magnitude system. However, our results demonstrate that galpro is a useful tool for inferring photometric redshift estimates in the case where a spectroscopic galaxy survey is nearly complete, but missing some spectroscopic redshift values.
引用
收藏
页码:2786 / 2800
页数:15
相关论文
共 71 条
  • [1] THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY
    Ahn, Christopher P.
    Alexandroff, Rachael
    Prieto, Carlos Allende
    Anderson, Scott F.
    Anderton, Timothy
    Andrews, Brett H.
    Aubourg, Eric
    Bailey, Stephen
    Balbinot, Eduardo
    Barnes, Rory
    Bautista, Julian
    Beers, Timothy C.
    Beifiori, Alessandra
    Berlind, Andreas A.
    Bhardwaj, Vaishali
    Bizyaev, Dmitry
    Blake, Cullen H.
    Blanton, Michael R.
    Blomqvist, Michael
    Bochanski, John J.
    Bolton, Adam S.
    Borde, Arnaud
    Bovy, Jo
    Brandt, W. N.
    Brinkmann, J.
    Brown, Peter J.
    Brownstein, Joel R.
    Bundy, Kevin
    Busca, N. G.
    Carithers, William
    Carnero, Aurelio R.
    Carr, Michael A.
    Casetti-Dinescu, Dana I.
    Chen, Yanmei
    Chiappini, Cristina
    Comparat, Johan
    Connolly, Natalia
    Crepp, Justin R.
    Cristiani, Stefano
    Croft, Rupert A. C.
    Cuesta, Antonio J.
    da Costa, Luiz N.
    Davenport, James R. A.
    Dawson, Kyle S.
    de Putter, Roland
    De Lee, Nathan
    Delubac, Timothee
    Dhital, Saurav
    Ealet, Anne
    Ebelke, Garrett L.
    [J]. ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2012, 203 (02)
  • [2] GPZ: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
    Almosallam, Ibrahim A.
    Jarvis, Matt J.
    Roberts, Stephen J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 462 (01) : 726 - 739
  • [3] Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North
    Arnouts, S
    Cristiani, S
    Moscardini, L
    Matarrese, S
    Lucchin, F
    Fontana, A
    Giallongo, E
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) : 540 - 556
  • [4] On the realistic validation of photometric redshifts
    Beck, R.
    Lin, C. -A.
    Ishida, E. E. O.
    Gieseke, F.
    de Souza, R. S.
    Costa-Duarte, M. V.
    Hattab, M. W.
    Krone-Martins, A.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (04) : 4323 - 4339
  • [5] Bayesian photometric redshift estimation
    Benítez, N
    [J]. ASTROPHYSICAL JOURNAL, 2000, 536 (02) : 571 - 583
  • [6] A random forest guided tour
    Biau, Gerard
    Scornet, Erwan
    [J]. TEST, 2016, 25 (02) : 197 - 227
  • [7] The WiggleZ Dark Energy Survey: testing the cosmological model with baryon acoustic oscillations at z=0.6
    Blake, Chris
    Davis, Tamara
    Poole, Gregory B.
    Parkinson, David
    Brough, Sarah
    Colless, Matthew
    Contreras, Carlos
    Couch, Warrick
    Croom, Scott
    Drinkwater, Michael J.
    Forster, Karl
    Gilbank, David
    Gladders, Mike
    Glazebrook, Karl
    Jelliffe, Ben
    Jurek, Russell J.
    Li, I-hui
    Madore, Barry
    Martin, D. Christopher
    Pimbblet, Kevin
    Pracy, Michael
    Sharp, Rob
    Wisnioski, Emily
    Woods, David
    Wyder, Ted K.
    Yee, H. K. C.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 415 (03) : 2892 - 2909
  • [8] A lack of evolution in the very bright end of the galaxy luminosity function from z ≃ 8 to 10
    Bowler, R. A. A.
    Jarvis, M. J.
    Dunlop, J. S.
    McLure, R. J.
    McLeod, D. J.
    Adams, N. J.
    Milvang-Jensen, B.
    McCracken, H. J.
    [J]. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (02) : 2059 - 2084
  • [9] Reminder of the First Paper on Transfer Learning in Neural Networks, 1976
    Bozinovski, Stevo
    [J]. INFORMATICA-AN INTERNATIONAL JOURNAL OF COMPUTING AND INFORMATICS, 2020, 44 (03): : 291 - 302
  • [10] EAZY: A FAST, PUBLIC PHOTOMETRIC REDSHIFT CODE
    Brammer, Gabriel B.
    van Dokkum, Pieter G.
    Coppi, Paolo
    [J]. ASTROPHYSICAL JOURNAL, 2008, 686 (02) : 1503 - 1513