Determination of the Optimum Architecture of Additively Manufactured Magnetic Bioactive Glass Scaffolds for Bone Tissue Engineering and Drug-Delivery Applications

被引:0
|
作者
Vishwakarma, Ashok [1 ]
Sinha, Niraj [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, India
来源
ACS APPLIED BIO MATERIALS | 2024年 / 7卷 / 10期
关键词
magnetic bioactive glass; scaffolds; material-extrusionadditive manufacturing; bone tissue engineering; drug delivery; IN-VITRO; PERMEABILITY; HYPERTHERMIA; CERAMICS; STRENGTH; INGROWTH; SIZE;
D O I
10.1021/acsabm.4c00995
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
For better bone regeneration, precise control over the architecture of the scaffolds is necessary. Because the shape of the pore may affect the bone regeneration, therefore, additive manufacturing has been used in this study to fabricate magnetic bioactive glass (MBG) scaffolds with three different architectures, namely, grid, gyroid, and Schwarz D surface with 15 x 15 x 15 mm(3) dimensions and 70% porosity. These scaffolds have been fabricated using an in-house-developed material-extrusion-based additive manufacturing system. The composition of bioactive glass was selected as 45% SiO2, 20% Na2O, 23% CaO, 6% P2O5, 2.5% B2O3, 1% ZnO, 2% MgO, and 0.5% CaF2 (wt %), and additionally 0.4 wt % of iron carbide nanoparticles were incorporated. Afterward, MBG powder was mixed with a 25% (w/v) Pluronic F-127 solution to prepare a slurry for fabricating scaffolds at 23% relative humidity. The morphological characterization using microcomputed tomography revealed the appropriate pore size distribution and interconnectivity of the scaffolds. The compressive strengths of the fabricated grid, gyroid, and Schwarz D scaffolds were found to be 14.01 +/- 1.01, 10.78 +/- 1.5, and 12.57 +/- 1.2 MPa, respectively. The in vitro study was done by immersing the MBG scaffolds in simulated body fluid for 1, 3, 7, and 14 days. Darcy's law, which describes the flow through porous media, was used to evaluate the permeability of the scaffolds. Furthermore, an anticancer drug (Mitomycin C) was loaded onto these scaffolds, wherein these scaffolds depicted good release behavior. Overall, gyroid-structured scaffolds were found to be the most suitable among the three scaffolds considered in this study for bone tissue engineering and drug-delivery applications.
引用
收藏
页码:6847 / 6864
页数:18
相关论文
共 50 条
  • [21] Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications
    Sharma, Shubham
    Sudhakara, P.
    Singh, Jujhar
    Ilyas, R. A.
    Asyraf, M. R. M.
    Razman, M. R.
    POLYMERS, 2021, 13 (16)
  • [22] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Vu, Ashley A.
    Bose, Susmita
    ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (03) : 1025 - 1033
  • [23] Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering
    Sonia Fiorilli
    Francesco Baino
    Valentina Cauda
    Marco Crepaldi
    Chiara Vitale-Brovarone
    Danilo Demarchi
    Barbara Onida
    Journal of Materials Science: Materials in Medicine, 2015, 26
  • [24] Vitamin D3 Release from Traditionally and Additively Manufactured Tricalcium Phosphate Bone Tissue Engineering Scaffolds
    Ashley A. Vu
    Susmita Bose
    Annals of Biomedical Engineering, 2020, 48 : 1025 - 1033
  • [25] Cerium-Containing Mesoporous Bioactive Glasses (MBGs)-Derived Scaffolds with Drug Delivery Capability for Potential Tissue Engineering Applications
    Atkinson, Irina
    Seciu-Grama, Ana Maria
    Petrescu, Simona
    Culita, Daniela
    Mocioiu, Oana Catalina
    Voicescu, Mariana
    Mitran, Raul-Augustin
    Lincu, Daniel
    Prelipcean, Ana-Maria
    Craciunescu, Oana
    PHARMACEUTICS, 2022, 14 (06)
  • [26] Collagen as Coating Material for 45S5 Bioactive Glass-Based Scaffolds for Bone Tissue Engineering
    Hum, Jasmin
    Boccaccini, Aldo R.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (06):
  • [27] Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering
    Mourino, Viviana
    Cattalini, Juan P.
    Roether, Judith A.
    Dubey, Prachi
    Roy, Ipsita
    Boccaccini, Aldo R.
    EXPERT OPINION ON DRUG DELIVERY, 2013, 10 (10) : 1353 - 1365
  • [28] Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds
    Mourino, Viviana
    Boccaccini, Aldo R.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 (43) : 209 - 227
  • [29] Kefiran cryogels as potential scaffolds for drug delivery and tissue engineering applications
    Radhouani, Hajer
    Bicho, Diana
    Goncalves, Cristiana
    Raquel Maia, F.
    Reis, Rui L.
    Oliveira, Joaquim M.
    MATERIALS TODAY COMMUNICATIONS, 2019, 20
  • [30] Robocasting of multicomponent sol-gel-derived silicate bioactive glass scaffolds for bone tissue engineering
    Fiume, Elisa
    Massera, Jonathan
    D'Ambrosio, Daniele
    Verne, Enrica
    Baino, Francesco
    CERAMICS INTERNATIONAL, 2022, 48 (23) : 35209 - 35216