Infrared Collects of Scale Models for Automatic Target Recognition

被引:0
作者
Ross, Jacob [1 ]
Weerasinghe, Rajith [1 ]
Lastrapes, Justin [1 ]
Shaver, Ryan J. [1 ]
Sotirelis, Paul [2 ]
机构
[1] Etegent Technol Ltd, Beavercreek, OH 45431 USA
[2] Air Force Res Lab, Sensors Directorate, Wright Patterson AFB, OH USA
来源
AUTOMATIC TARGET RECOGNITION XXXIV | 2024年 / 13039卷
关键词
Scale models; infrared; automatic target recognition;
D O I
10.1117/12.3013548
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Traditional data collects of high priority targets require immense planning and resources. When novel operating conditions (OCs) or imaging parameters need to be explored, typically synthetic simulations are leveraged. While synthetic data can be used to assess automatic target recognitions (ATR) algorithms; some simulation environments may inaccurately represent sensor phenomenology. To levitate this issue, a scale model approach is utilized to provide accurate data in a laboratory setting. This work demonstrates the effectiveness of a resource cognizant approach for collecting IR imagery suitable to assessing ATR algorithms. A target of is interest is 3D printed at 1/60th scale with a commercial printer and readily available materials. The printed models are imaged with a commercially available IR camera in a simple laboratory setup. The collected imagery is used to test ATR algorithms when trained on a standard IR ATR dataset; the publicly available ARL Comanche FLIR dataset. The performance of the selected ATR algorithms when given sampled of scale model data is compared to the performance of the same algorithms when using the provided measured data.
引用
收藏
页数:7
相关论文
共 13 条
  • [1] Der S., 2001, Army Research Laboratory technical report, ARL-TN-175
  • [2] Performance of Peaky Template Matching Under Additive White Gaussian Noise and Uniform Quantization
    Horvath, Matthew S.
    Rigling, Brian D.
    [J]. AUTOMATIC TARGET RECOGNITION XXV, 2015, 9476
  • [3] Huang JW, 2020, Arxiv, DOI arXiv:2005.11621
  • [4] King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
  • [5] Mendoza-Schrock O. L., 2017, PhD thesis
  • [6] Nair V., 2010, P 27 INT C MACH LEAR, P807
  • [7] DeepTarget: An Automatic Target Recognition Using Deep Convolutional Neural Networks
    Nasrabadi, Nasser M.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2019, 55 (06) : 2687 - 2697
  • [8] Designing ISAR Lab Experiments for EO-SAR ATR
    Saville, Michael Andrew
    Compaleo, Jacob D.
    Judd, Heather L.
    Smith, Jared
    Sotirelis, Paul
    [J]. IEEE PHOTONICS JOURNAL, 2019, 11 (03):
  • [9] An evaluation of open set recognition for FUR images
    Scherreik, Matthew
    Rigling, Brian
    [J]. AUTOMATIC TARGET RECOGNITION XXV, 2015, 9476
  • [10] Using deep learning to estimate linear structure orientation in polarimetric radar data
    Sotirelis, Paul
    Gilmore, Sean
    Nolan, Adam
    [J]. ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXVII, 2020, 11393