Multi-objective evolutionary neural architecture search for network intrusion detection

被引:1
|
作者
Lin, Qiuzhen [1 ]
Liu, Zhihao [1 ]
Yang, Yeming [1 ]
Wong, Ka-Chun [2 ]
Lu, Yahui [1 ]
Li, Jianqiang [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Peoples R China
[2] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Intrusion detection system; Neural architecture search; Multi-objective optimization; ALGORITHM;
D O I
10.1016/j.swevo.2024.101702
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network Intrusion Detection (NID) becomes significantly important for protecting the security of information systems, as the frequency and complexity of network attacks are increasing with the rapid development of the Internet. Recent research studies have proposed various neural network models for NID, but they need to manually design the network architectures based on expert knowledge, which is very time-consuming. To solve this problem, this paper proposes a Multi-objective Evolutionary Neural Architecture Search (MENAS) method, which can automatically design neural network models for NID. First, a comprehensive search space is designed and then a weight-sharing mechanism is used to construct a supernet for NID, allowing each subnet to inherit weights from the supernet for direct performance evaluation. Subsequently, the subnets are encoded as chromosomes for multi-objective evolutionary search, which simultaneously optimizes two objectives: enhancing the model's detection performance and reducing its complexity. To improve the search capability, a path-based crossover method is designed, which can iteratively refine the subnets' architectures by simultaneously optimizing their accuracy and complexity for NID. At last, our MENAS method has been validated through extensive experiments on three well-known NID datasets: NSL-KDD, UNSW-NB15, and CICIDS2017. The experiments show that our MENAS method obtains an average 1.45% improvement on accuracy and an average 68.70% reduction on floating-point operations through multi-objective optimization process on six scenarios, which outperforms some state-of-the-art NID methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Multi-Objective Neural Architecture Search by Learning Search Space Partitions
    Zhao, Yiyang
    Wang, Linnan
    Guo, Tian
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [22] Lightweight multi-objective evolutionary neural architecture search with low-cost proxy metrics
    Luong, Ngoc Hoang
    Phan, Quan Minh
    Vo, An
    Pham, Tan Ngoc
    Bui, Dzung Tri
    INFORMATION SCIENCES, 2024, 655
  • [23] A Multi-Objective Evolutionary Approach Based on Graph-in-Graph for Neural Architecture Search of Convolutional Neural Networks
    Xue, Yu
    Jiang, Pengcheng
    Neri, Ferrante
    Liang, Jiayu
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2021, 31 (09)
  • [24] Pareto-Informed Multi-objective Neural Architecture Search
    Luo, Ganyuan
    Li, Hao
    Chen, Zefeng
    Zhou, Yuren
    PARALLEL PROBLEM SOLVING FROM NATURE-PSN XVIII, PPSN 2024, PT III, 2024, 15150 : 369 - 385
  • [25] Multi-Objective Neural Architecture Search for In-Memory Computing
    Amin, Md Hasibul
    Mohammadi, Mohammadreza
    Zand, Ramtin
    2024 IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM ON VLSI, ISVLSI, 2024, : 343 - 348
  • [26] Network Intrusion Detection Based on an Efficient Neural Architecture Search
    Lyu, Renjian
    He, Mingshu
    Zhang, Yu
    Jin, Lei
    Wang, Xinlei
    SYMMETRY-BASEL, 2021, 13 (08):
  • [27] An Efficient Multi-Objective Evolutionary Zero-Shot Neural Architecture Search Framework for Image Classification
    Zhang, Jianwei
    Zhang, Lei
    Wang, Yan
    Wang, Junyou
    Wei, Xin
    Liu, Wenjie
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (05)
  • [28] Robust Lightweight Neural Network Architecture Search Based on Multi-objective Particle Swarm Optimization
    Chen, Peipei
    Yan, Li
    Du, Yi
    ADVANCES IN SWARM INTELLIGENCE, PT I, ICSI 2024, 2024, 14788 : 430 - 441
  • [29] Multi-objective optimization of neural network with stochastic directed search
    Lopez-Ruiz, Samuel
    Hernandez-Castellanos, Carlos
    Rodriguez-Vazquez, Katya
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [30] Automated Hardware and Neural Network Architecture co-design of FPGA accelerators using multi-objective Neural Architecture Search
    Colangelo, Philip
    Segal, Oren
    Speicher, Alex
    Margala, Martin
    2020 IEEE 10TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS (ICCE-BERLIN), 2020,