Modica-type estimates and curvature results for overdetermined elliptic problems

被引:0
作者
Ruiz, David [1 ]
Sicbaldi, Pieralberto [1 ,2 ]
Wu, Jing [3 ]
机构
[1] Univ Granada, Dept Anal Matemat, IMAG, Campus Fuentenueva, Granada 18071, Spain
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
[3] Univ Granada, Dept Anal Matemat, Campus Fuentenueva, Granada 18071, Spain
关键词
Overdetermined boundary conditions; Modica-type estimate; maximum principle; EQUATIONS; MANIFOLDS;
D O I
10.1142/S0219199724500500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a Modica-type estimate on bounded solutions to the overdetermined elliptic problem {Delta u+f(u)=0 in Omega, u>0 in Omega, u=0 on partial derivative Omega, partial derivative(nu)u=-kappa on partial derivative Omega, where Omega subset of R-n,n >= 2. As we will see, the presence of the boundary changes the usual form of the Modica estimate for entire solutions. We will also discuss the equality case. From such estimates, we will deduce information about the curvature of partial derivative Omega under a certain condition on kappa and f. The proof uses the maximum principle together with scaling arguments and a careful passage to the limit in the arguments by contradiction.
引用
收藏
页数:15
相关论文
共 50 条
[21]   UNIFORM GRADIENT ESTIMATES OF GENERALIZED PARABOLIC MEAN CURVATURE TYPE EQUATIONS WITH OBLIQUE BOUNDARY VALUE PROBLEMS [J].
Zhang, Xueyi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, 23 (01) :65-79
[22]   Improved results on planar Kirchhoff-type elliptic problems with critical exponential growth [J].
Chen, Sitong ;
Tang, Xianhua ;
Wei, Jiuyang .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (01)
[23]   L∞-Estimates for nonlinear elliptic Neumann boundary value problems [J].
Winkert, Patrick .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (03) :289-302
[24]   Elliptic Pre-Complexes, Hodge-like Decompositions and Overdetermined Boundary-Value Problems [J].
Kupferman, Raz ;
Leder, Roee .
FORUM OF MATHEMATICS SIGMA, 2025, 13
[25]   Global estimates for elliptic systems in homogenization problems in Reifenberg domains [J].
Byun, Sun-Sig ;
Jang, Yunsoo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (06) :2061-2075
[26]   Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data [J].
Boccardo, Lucio ;
Orsina, Luigi .
POTENTIAL ANALYSIS, 2025, 62 (02) :377-392
[27]   Potential estimates for elliptic measure data problems with irregular obstacles [J].
Byun, Sun-Sig ;
Song, Kyeong ;
Youn, Yeonghun .
MATHEMATISCHE ANNALEN, 2023, 387 (1-2) :745-805
[28]   Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data [J].
Boccardo, Lucio .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (04) :591-601
[29]   A PRIORI ESTIMATES AND REDUCTION PRINCIPLES FOR QUASILINEAR ELLIPTIC PROBLEMS AND APPLICATIONS [J].
D'Ambrosio, Lorenzo ;
Mitidieri, Enzo .
ADVANCES IN DIFFERENTIAL EQUATIONS, 2012, 17 (9-10) :935-1000
[30]   A priori estimates for solutions to anisotropic elliptic problems via symmetrization [J].
Alberico, A. ;
di Blasio, G. ;
Feo, F. .
MATHEMATISCHE NACHRICHTEN, 2017, 290 (07) :986-1003