Generative AI in orthopedics: an explainable deep few-shot image augmentation pipeline for plain knee radiographs and Kellgren-Lawrence grading

被引:2
作者
Littlefield, Nickolas [1 ,2 ]
Amirian, Soheyla [3 ]
Biehl, Jacob [4 ]
Andrews, Edward G. [5 ]
Kann, Michael [6 ]
Myers, Nicole [7 ]
Reid, Leah [7 ]
Yates Jr, Adolph J. [8 ]
McGrory, Brian J. [9 ]
Parmanto, Bambang [7 ]
Seyler, Thorsten M. [10 ]
Plate, Johannes F. [8 ]
Rashidi, Hooman H. [2 ,6 ]
Tafti, Ahmad P. [1 ,2 ,6 ,7 ]
机构
[1] Univ Pittsburgh, Sch Comp & Informat, Intelligent Syst Program, Pittsburgh, PA 15260 USA
[2] Univ Pittsburgh, Computat Pathol & AI Ctr Excellence, Pittsburgh, PA 15261 USA
[3] Pace Univ, Seidenberg Sch Comp Sci & Informat Syst, New York, NY USA
[4] Univ Pittsburgh, Sch Comp & Informat, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, Dept Neurol Surg, Pittsburgh, PA 15213 USA
[6] Univ Pittsburgh, Sch Med, Pittsburgh, PA 15213 USA
[7] Univ Pittsburgh, Dept Hlth Informat Management, Pittsburgh, PA 15260 USA
[8] Univ Pittsburgh, Dept Orthopaed Surg, Pittsburgh, PA 15213 USA
[9] Tufts Univ, Dept Orthopaed Surg, Medford, MA 02111 USA
[10] Duke Univ, Dept Orthopaed Surg, Durham, NC 27560 USA
关键词
deep learning medical imaging; computational orthopedics; image augmentation; generative AI; OSTEOARTHRITIS;
D O I
10.1093/jamia/ocae246
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Objectives Recently, deep learning medical image analysis in orthopedics has become highly active. However, progress has been restricted by the absence of large-scale and standardized ground-truth images. To the best of our knowledge, this study is the first to propose an innovative solution, namely a deep few-shot image augmentation pipeline, that addresses this challenge by synthetically generating knee radiographs for training downstream tasks, with a specific focus on knee osteoarthritis Kellgren-Lawrence (KL) grading.Materials and Methods This study leverages a deep few-shot image augmentation pipeline to generate synthetic knee radiographs. Despite the limited availability of training samples, we demonstrate the capability of our proposed computational strategy to produce high-fidelity plain knee radiographs and use them to successfully train a KL grade classifier.Results Our experimental results showcase the effectiveness of the proposed computational pipeline. The generated synthetic radiographs exhibit remarkable fidelity, evidenced by the achieved average Frechet Inception Distance (FID) score of 26.33 for KL grading and 22.538 for bilateral knee radiographs. For KL grading classification, the classifier achieved a test Cohen's Kappa and accuracy of 0.451 and 0.727, respectively. Our computational strategy also resulted in a publicly and freely available imaging dataset of 86 000 synthetic knee radiographs.Conclusions Our approach demonstrates the capability to produce top-notch synthetic knee radiographs and use them for KL grading classification, even when working with a constrained training dataset. The results obtained emphasize the effectiveness of the pipeline in augmenting datasets for knee osteoarthritis research, opening doors for broader applications in orthopedics, medical image analysis, and AI-powered diagnosis.
引用
收藏
页码:2668 / 2678
页数:11
相关论文
共 32 条
[1]   A fully automatic fine tuned deep learning model for knee osteoarthritis detection and progression analysis [J].
Abd El-Ghany, Sameh ;
Elmogy, Mohammed ;
Abd El-Aziz, A. A. .
EGYPTIAN INFORMATICS JOURNAL, 2023, 24 (02) :229-240
[2]   Automatic detection and classification of knee osteoarthritis using deep learning approach [J].
Abdullah, S. Sheik ;
Rajasekaran, M. Pallikonda .
RADIOLOGIA MEDICA, 2022, 127 (04) :398-406
[3]   Predicting knee osteoarthritis severity: comparative modeling based on patient's data and plain X-ray images [J].
Abedin, Jaynal ;
Antony, Joseph ;
McGuinness, Kevin ;
Moran, Kieran ;
O'Connor, Noel E. ;
Rebholz-Schuhmann, Dietrich ;
Newell, John .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Osteo-NeT: An Automated System for Predicting Knee Osteoarthritis from X-ray Images Using Transfer-Learning-Based Neural Networks Approach [J].
Alshamrani, Hassan A. ;
Rashid, Mamoon ;
Alshamrani, Sultan S. ;
Alshehri, Ali H. D. .
HEALTHCARE, 2023, 11 (09)
[5]   Descriptive Overview of Pertussis Epidemiology Among Older Adults in Europe During 2010-2020 [J].
Bahar, Enas ;
Shamarina, Daria ;
Sergerie, Yan ;
Mukherjee, Piyali .
INFECTIOUS DISEASES AND THERAPY, 2022, 11 (05) :1821-1838
[6]   The global burden of hip and knee osteoarthritis: estimates from the Global Burden of Disease 2010 study [J].
Cross, Marita ;
Smith, Emma ;
Hoy, Damian ;
Nolte, Sandra ;
Ackerman, Ilana ;
Fransen, Marlene ;
Bridgett, Lisa ;
Williams, Sean ;
Guillemin, Francis ;
Hill, Catherine L. ;
Laslett, Laura L. ;
Jones, Graeme ;
Cicuttini, Flavia M. ;
Osborne, Richard ;
Vos, Theo ;
Buchbinder, Rachelle ;
Woolf, Anthony ;
March, Lyn .
ANNALS OF THE RHEUMATIC DISEASES, 2014, 73 (07) :1323-1330
[7]   Knee osteoarthritis: Current status and research progress in treatment (Review) [J].
Geng, Ruizhi ;
Li, Jiayi ;
Yu, Chen ;
Zhang, Chaoqun ;
Chen, Fei ;
Chen, Jie ;
Ni, Haonan ;
Wang, Jiaxu ;
Kang, Kaiqiang ;
Wei, Ziqi ;
Xu, Yongqing ;
Jin, Tao .
EXPERIMENTAL AND THERAPEUTIC MEDICINE, 2023, 26 (04)
[8]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[9]   High-resolution knee plain radiography image synthesis using style generative adversarial network adaptive discriminator augmentation [J].
Gun Ahn ;
Choi, Byung S. ;
Ko, Sunho ;
Jo, Changwung ;
Han, Hyuk-Soo ;
Lee, Myung Chul ;
Du Hyun Ro .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2023, 41 (01) :84-93
[10]  
He K., 2015, CORR, Vabs/1502.01852, DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]