Experimentally validated fractional-order PI with anti-windup for fractional-order plus time delay processes

被引:1
|
作者
Meena, Rammurti [1 ]
Chakraborty, Sudipta [1 ]
Pal, Vipin Chandra [1 ]
Lala, Himadri [2 ]
机构
[1] Natl Inst Technol Silchar, Silchar 788010, Assam, India
[2] Vellore Inst Technol, Vellore 632014, India
关键词
Fractional-order control; FOPI anti-windup controller; Target loop; Maximum sensitivity; Phase margin; Time delay; CONTROLLER-DESIGN; IMC CONTROLLER; MODEL;
D O I
10.1007/s40435-024-01483-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinearity constraints are inherent in all physical systems and can impact the system output. The windup issue occurs when actuators reach their limits, causing a disparity between the system input and the controller output. To eliminate or minimize the impact of saturation, controllers are designed with anti-windup techniques. This paper proposes a new target loop-based simple analytical design of a fractional-order proportional integral (FOPI) anti-windup controller for non-integer-order (NIO) processes with time delay. Explicit tuning rules in terms of plant parameters are established to meet user-defined criteria such as phase margin (phi m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _\text {m}$$\end{document}) and maximum sensitivity (Ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_\text {s})$$\end{document}. To check the performance and robustness of the proposed control law, case studies are conducted and compared with recently developed control laws. The robustness of the proposed controller is examined with parameter variations. Lastly, real-time validation of the proposed control approach is carried out in a two-tank level loop.
引用
收藏
页码:4232 / 4243
页数:12
相关论文
共 50 条
  • [21] On controllability of fractional-order impulsive and switching systems with time delay
    Yan, Jiayuan
    Hu, Bin
    Guan, Zhi-Hong
    Zhang, Ding-Xue
    APPLIED MATHEMATICS AND COMPUTATION, 2025, 497
  • [22] The effect of time delay on the dynamics of a fractional-order epidemic model
    Wu, Wanqin
    Zhou, Jianwen
    Li, Zhixiang
    Tan, Xuewen
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [23] Analytical method on stabilisation of fractional-order plants with interval uncertainties using fractional-order PIλ Dμ controllers
    Gao, Zhe
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2019, 50 (05) : 935 - 953
  • [24] A Simple Frequency-domain Tuning Method of Fractional-order PID Controllers for Fractional-order Delay Systems
    Xu Li
    Lifu Gao
    International Journal of Control, Automation and Systems, 2022, 20 : 2159 - 2168
  • [25] Robust PI/PID parameter surfaces for a class of fractional-order processes
    Konigsmarkova, J.
    Cech, M.
    IFAC PAPERSONLINE, 2018, 51 (04): : 763 - 768
  • [26] Suboptimal control of fractional-order dynamic systems with delay argument
    Jajarmi, Amin
    Baleanu, Dumitru
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (12) : 2430 - 2446
  • [27] Asymptotic stability analysis of fractional-order neutral systems with time delay
    Li, Hong
    Zhong, Shou-ming
    Li, Hou-biao
    ADVANCES IN DIFFERENCE EQUATIONS, 2015,
  • [28] Positivity and Stability of Fractional-Order Linear Time-Delay Systems
    Yilin Hao
    Chengdai Huang
    Jinde Cao
    Heng Liu
    Journal of Systems Science and Complexity, 2022, 35 : 2181 - 2207
  • [29] Dynamical analysis of Duffing oscillator with fractional-order feedback with time delay
    Wen Shao-Fang
    Shen Yong-Jun
    Yang Shao-Pu
    ACTA PHYSICA SINICA, 2016, 65 (09)
  • [30] Novel stability results of multivariable fractional-order system with time delay
    Zhang, Zhe
    Wang, Yaonan
    Zhang, Jing
    Ai, Zhaoyang
    Liu, Feng
    CHAOS SOLITONS & FRACTALS, 2022, 157