Experimentally validated fractional-order PI with anti-windup for fractional-order plus time delay processes

被引:3
作者
Meena, Rammurti [1 ]
Chakraborty, Sudipta [1 ]
Pal, Vipin Chandra [1 ]
Lala, Himadri [2 ]
机构
[1] Natl Inst Technol Silchar, Silchar 788010, Assam, India
[2] Vellore Inst Technol, Vellore 632014, India
关键词
Fractional-order control; FOPI anti-windup controller; Target loop; Maximum sensitivity; Phase margin; Time delay; CONTROLLER-DESIGN; IMC CONTROLLER; MODEL;
D O I
10.1007/s40435-024-01483-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nonlinearity constraints are inherent in all physical systems and can impact the system output. The windup issue occurs when actuators reach their limits, causing a disparity between the system input and the controller output. To eliminate or minimize the impact of saturation, controllers are designed with anti-windup techniques. This paper proposes a new target loop-based simple analytical design of a fractional-order proportional integral (FOPI) anti-windup controller for non-integer-order (NIO) processes with time delay. Explicit tuning rules in terms of plant parameters are established to meet user-defined criteria such as phase margin (phi m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _\text {m}$$\end{document}) and maximum sensitivity (Ms)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(M_\text {s})$$\end{document}. To check the performance and robustness of the proposed control law, case studies are conducted and compared with recently developed control laws. The robustness of the proposed controller is examined with parameter variations. Lastly, real-time validation of the proposed control approach is carried out in a two-tank level loop.
引用
收藏
页码:4232 / 4243
页数:12
相关论文
共 42 条
[1]   Robust internal model controller with increased closed-loop bandwidth for process control systems [J].
Arya, Pushkar Prakash ;
Chakrabarty, Sohom .
IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (15) :2134-2146
[2]   A Robust Internal Model-Based Fractional Order Controller for Fractional Order Plus Time Delay Processes [J].
Arya, Pushkar Prakash ;
Chakrabarty, Sohom .
IEEE CONTROL SYSTEMS LETTERS, 2020, 4 (04) :862-867
[3]   Equilibrium optimiser tuned frequency-shifted internal model control proportional-derivative decoupled dual-loop design for industrial plants followed by experimental validation [J].
Aryan, Pulakraj ;
Raja, G. Lloyds ;
Vilanova, Ramon .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (14) :2874-2896
[4]   Cross-Convolution Approach for Delay Estimation in Fractional-Order Time-Delay Systems [J].
Asiri, Sharefa ;
Liu, Da-Yan .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (5) :2873-2890
[5]   Tuning of PID controllers based on Bode's ideal transfer function [J].
Barbosa, RS ;
Machado, JAT ;
Ferreira, IM .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :305-321
[6]   AN ANALYSIS PACKAGE COMPARING PID ANTIWINDUP STRATEGIES [J].
BOHN, C ;
ATHERTON, DP .
IEEE CONTROL SYSTEMS MAGAZINE, 1995, 15 (02) :34-40
[7]  
Chakraborty S., 2022, IETE Journal of Research, V69, P1
[8]   Frequency Loop-Shaping and IMC-Based Integer-Order Robust PID Controller Design for Fractional-Order Processes with Time-Delay [J].
Chakraborty, Sudipta ;
Das, Dipjyoti ;
Naskar, Asim K. ;
Ghosh, Sandip .
IETE JOURNAL OF RESEARCH, 2024, 70 (10) :7820-7830
[9]   A new analytical approach for phase-margin specification-based target-loop selection for different class of dead-time processes [J].
Chakraborty, Sudipta .
INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2022, 16 (01) :125-135
[10]  
Chakraborty S, 2020, INT J AUTOM CONTROL, V14, P399