Towards the holistic design of alloys with large language models

被引:2
作者
Pei, Zongrui [1 ]
Yin, Junqi [2 ]
Neugebauer, Joerg [3 ]
Jain, Anubhav [4 ]
机构
[1] NYU, New York, NY 10012 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
[3] Max Planck Inst Eisenforschung, Dusseldorf, Germany
[4] Lawrence Berkeley Natl Lab, Berkeley, CA USA
来源
NATURE REVIEWS MATERIALS | 2024年 / 9卷 / 12期
关键词
D O I
10.1038/s41578-024-00726-6
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large language models are very effective at solving general tasks, but can also be useful in materials design and extracting and using information from the scientific literature and unstructured corpora. In the domain of alloy design and manufacturing, they can expedite the materials design process and enable the inclusion of holistic criteria.
引用
收藏
页码:840 / 841
页数:2
相关论文
共 8 条
  • [1] Roadmap on data-centric materials science
    Bauer, Stefan
    Benner, Peter
    Bereau, Tristan
    Blum, Volker
    Boley, Mario
    Carbogno, Christian
    Catlow, C. Richard A.
    Dehm, Gerhard
    Eibl, Sebastian
    Ernstorfer, Ralph
    Fekete, Adam
    Foppa, Lucas
    Fratzl, Peter
    Freysoldt, Christoph
    Gault, Baptiste
    Ghiringhelli, Luca M.
    Giri, Sajal K.
    Gladyshev, Anton
    Goyal, Pawan
    Hattrick-Simpers, Jason
    Kabalan, Lara
    Karpov, Petr
    Khorrami, Mohammad S.
    Koch, Christoph T.
    Kokott, Sebastian
    Kosch, Thomas
    Kowalec, Igor
    Kremer, Kurt
    Leitherer, Andreas
    Li, Yue
    Liebscher, Christian H.
    Logsdail, Andrew J.
    Lu, Zhongwei
    Luong, Felix
    Marek, Andreas
    Merz, Florian
    Mianroodi, Jaber R.
    Neugebauer, Joerg
    Pei, Zongrui
    Purcell, Thomas A. R.
    Raabe, Dierk
    Rampp, Markus
    Rossi, Mariana
    Rost, Jan-Michael
    Saal, James
    Saalmann, Ulf
    Sasidhar, Kasturi Narasimha
    Saxena, Alaukik
    Sbailo, Luigi
    Scheidgen, Markus
    [J]. MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2024, 32 (06)
  • [2] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    [J]. PROGRESS IN MATERIALS SCIENCE, 2023, 131
  • [3] Data-driven materials research enabled by natural language processing and information extraction
    Olivetti, Elsa A.
    Cole, Jacqueline M.
    Kim, Edward
    Kononova, Olga
    Ceder, Gerbrand
    Han, Thomas Yong-Jin
    Hiszpanski, Anna M.
    [J]. APPLIED PHYSICS REVIEWS, 2020, 7 (04)
  • [4] Toward the design of ultrahigh-entropy alloys via mining six million texts
    Pei, Zongrui
    Yin, Junqi
    Liaw, Peter K.
    Raabe, Dierk
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [5] Machine-Learning Microstructure for Inverse Material Design
    Pei, Zongrui
    Rozman, Kyle A.
    Dogan, Omer N.
    Wen, Youhai
    Gao, Nan
    Holm, Elizabeth A.
    Hawk, Jeffrey A.
    Alman, David E.
    Gao, Michael C.
    [J]. ADVANCED SCIENCE, 2021, 8 (23)
  • [6] An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application
    Pei, Zongrui
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 737 : 132 - 150
  • [7] Touvron H., Llama 2: Open foundation and fine-tuned chat models, P2023, DOI DOI 10.48550/ARXIV.2307.09288
  • [8] Unsupervised word embeddings capture latent knowledge from materials science literature
    Tshitoyan, Vahe
    Dagdelen, John
    Weston, Leigh
    Dunn, Alexander
    Rong, Ziqin
    Kononova, Olga
    Persson, Kristin A.
    Ceder, Gerbrand
    Jain, Anubhav
    [J]. NATURE, 2019, 571 (7763) : 95 - +