Geometric design of carbon-based interlayer for advanced lithium-sulfur batteries

被引:3
作者
Gao, Lintong [1 ]
Wang, Xianyou [1 ]
Cao, Qi [1 ,2 ]
Jing, Bo [1 ,2 ]
机构
[1] Xiangtan Univ, Natl Local Joint Engn Lab Key Mat New Energy Stora, Key Lab Environm Friendly Chem & Applicat, Minist Educ,Sch Chem,Natl Base Int Sci & Technol C, Xiangtan 411105, Peoples R China
[2] Xiangtan Univ, Sch Chem, Xiangtan 411105, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -sulfur batteries; Interlayer; Polysulfide shuttling;
D O I
10.1016/j.est.2024.112661
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Interlayer engineering is considered as an innovative and efficient approach to constrain the shuttle effect of polysulfides while elevating sluggish redox reaction kinetics in lithium-sulfur (Li-S) batteries. However, the principles for functional interlayer design have not been scientifically established yet, as very few works have focused on the investigation of parameters (e.g., geometrical structure) that affect the electrochemical performance of interlayer. In this study, interlayers with identical chemical compositions but different micromorphologies are fabricated by polyacrylonitrile, including nanofiber, short stick, and powder. Multiphysics simulation and experimental results reveal that the distinctions in the microcrystalline interlayers lead to completely different suppression effects on polysulfides. Notably, the 3D carbon nanofiber-modified interlayer (NF) prepared from electrospinning technology forms a higher specific area and continuous electron access compared to short sticks and powder. Accordingly, the NF-based Li-S battery exhibited excellent cycling performance at 1.0 C, with a reversible capacity of 660 mAh g-1 after 300 cycles and a decay rate of about 0.10 %. Even at a high sulfur loading of 8.2 mg cm-2, it achieves a high areal capacity of 5.1 mAh cm-2 after 100 cycles at 0.2 C. This study clearly elucidates a design strategy for high-performance interlayer in Li-S batteries from a mesoscale perspective.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries
    Guo, Pengqian
    Liu, Dequan
    Liu, Zhengjiao
    Shang, Xiaonan
    Liu, Qiming
    He, Deyan
    ELECTROCHIMICA ACTA, 2017, 256 : 28 - 36
  • [32] Recent advances in interlayer and separator engineering for lithium-sulfur batteries
    Zhu D.
    Long T.
    Xu B.
    Zhao Y.
    Hong H.
    Liu R.
    Meng F.
    Liu J.
    Journal of Energy Chemistry, 2021, 57 : 41 - 60
  • [33] Electrocatalysts in lithium-sulfur batteries
    Shanying Wang
    Ziwei Wang
    Fangzheng Chen
    Bo Peng
    Jie Xu
    Junzhe Li
    Yaohui Lv
    Qi Kang
    Ailin Xia
    Lianbo Ma
    Nano Research, 2023, 16 : 4438 - 4467
  • [34] Electrocatalysts in lithium-sulfur batteries
    Wang, Shanying
    Wang, Ziwei
    Chen, Fangzheng
    Peng, Bo
    Xu, Jie
    Li, Junzhe
    Lv, Yaohui
    Kang, Qi
    Xia, Ailin
    Ma, Lianbo
    NANO RESEARCH, 2023, 16 (04) : 4438 - 4467
  • [35] Ultrathin Conductive Interlayer with High-Density Antisite Defects for Advanced Lithium-Sulfur Batteries
    He, Danqi
    Meng, Jintao
    Chen, Xinyu
    Liao, Yaqi
    Cheng, Zexiao
    Yuan, Lixia
    Li, Zhen
    Huang, Yunhui
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (02)
  • [36] Ordered porous metal oxide embedded dense carbon network design as high-performance interlayer for stable lithium-sulfur batteries
    Wang, Hongyu
    Xu, Ce
    Du, Xiaohang
    Liu, Guihua
    Han, Wenjia
    Li, Jingde
    CHEMICAL ENGINEERING JOURNAL, 2023, 471
  • [37] One dimensional carbon-based composites as cathodes for lithium-sulfur battery
    Luo, Jin
    Guan, Keke
    Lei, Wen
    Zhang, Shaowei
    Jia, Quanli
    Zhang, Haijun
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 122 : 101 - 120
  • [38] Porous Carbon Hosts for Lithium-Sulfur Batteries
    Wang, Minya
    Xia, Xinhui
    Zhong, Yu
    Wu, Jianbo
    Xu, Ruochen
    Yao, Zhujun
    Wang, Donghuang
    Tang, Wangjia
    Wang, Xiuli
    Tu, Jiangping
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (15) : 3710 - 3725
  • [39] Review of Carbon Materials for Lithium-Sulfur Batteries
    Li, Shanshan
    Jin, Bo
    Zhai, Xiaojie
    Li, Huan
    Jiang, Qing
    CHEMISTRYSELECT, 2018, 3 (08): : 2245 - 2260
  • [40] A wet-laid carbon paper with 3D conductive structure as an interlayer for lithium-sulfur batteries
    Li, Yao
    Meng, Ling
    Jin, Long
    Yun, Liang
    Jian, Hu
    MATERIALS RESEARCH EXPRESS, 2019, 6 (12)