HM-Net: Hybrid multi-scale cross-order fusion network for medical image segmentation

被引:1
作者
Zhao, Guangzhe
Zhu, Xingguo
Wang, Xueping
Yan, Feihu [1 ]
机构
[1] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing 100044, Peoples R China
关键词
Medical image segmentation; Multi-scale; Vision transformer; U-shaped networks; FEATURES;
D O I
10.1016/j.bspc.2024.106658
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
U-shaped structures are widely employed in medical image segmentation. However, in existing methods, the skip connection component primarily employs straightforward addition or concatenation, which can result in a reduced complementarity between features at hierarchical levels. These approaches can result in problems like imprecise identification of organs and unclear boundaries. In this paper, we propose a Hybrid Multi- scale Cross-order Fusion Network (HM-Net) for medical image segmentation tasks. Specifically, we first design a hybrid pyramid attention module (HPAM) to adaptively deepen shallow semantic features from both the spatial and channel dimensions through multi-scale feature fusion to alleviate the semantic interval between the decoder and encoder in the skip connection. In addition, we propose a cross-order multi-scale fusion decoder, which effectively captures the layered features produced by the decoder for fusion, mitigating information loss during the up-sampling process using a feature enhancement module and substantially improving the edge blurring problem. Through extensive experimentation on both the Synapse and ACDC datasets, our method has demonstrated superior performance compared to previous state-of-the-art methods.
引用
收藏
页数:11
相关论文
共 44 条
[1]   Dataset of breast ultrasound images [J].
Al-Dhabyani, Walid ;
Gomaa, Mohammed ;
Khaled, Hussien ;
Fahmy, Aly .
DATA IN BRIEF, 2020, 28
[2]   TransDeepLab: Convolution-Free Transformer-Based DeepLab v3+for Medical Image Segmentation [J].
Azad, Reza ;
Heidari, Moein ;
Shariatnia, Moein ;
Aghdam, Ehsan Khodapanah ;
Karimijafarbigloo, Sanaz ;
Adeli, Ehsan ;
Merhof, Dorit .
PREDICTIVE INTELLIGENCE IN MEDICINE (PRIME 2022), 2022, 13564 :91-102
[3]  
Badrinarayanan V, 2015, SEGNET DEEP CONVOLUT
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]  
Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
[6]   TransAttUnet: Multi-Level Attention-Guided U-Net With Transformer for Medical Image Segmentation [J].
Chen, Bingzhi ;
Liu, Yishu ;
Zhang, Zheng ;
Lu, Guangming ;
Kong, Adams Wai Kin .
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (01) :55-68
[7]  
Chen J., 2021, arXiv
[8]  
Chen LC, 2016, Arxiv, DOI arXiv:1412.7062
[9]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[10]   Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation [J].
Chen, Liang-Chieh ;
Zhu, Yukun ;
Papandreou, George ;
Schroff, Florian ;
Adam, Hartwig .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :833-851