Classification of superpotentials for cohomogeneity one Ricci solitons

被引:0
作者
Wang, Qiu Shi [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
Cohomogeneity one; Ricci solitons; Hamiltonian systems; Superpotentials;
D O I
10.1016/j.geomphys.2024.105294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify superpotentials for the Hamiltonian system corresponding to the cohomogeneity one gradient Ricci soliton equations. Aside from recovering known examples of superpotentials for steady solitons, we find a new superpotential on a specific case of the B & eacute;rard Bergery-Calabi ansatz. The latter is used to obtain an explicit formula for a steady complete soliton with an equidistant family of hypersurfaces given by circle bundles over S 2 x S 2 . There are no superpotentials in the non-steady case in dimensions greater than 2, even if polynomial coefficients are allowed. We also briefly discuss generalised first integrals and the limitations of some known methods of finding them. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:19
相关论文
共 10 条
[1]  
Berard-Bergery L., 1982, I E CARTAN, V6, P1
[2]   Classification of Superpotentials [J].
Dancer, A. ;
Wang, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 284 (03) :583-647
[3]  
Dancer A, 2000, J REINE ANGEW MATH, V524, P97
[4]   Superpotentials and the cohomogeneity one Einstein equations [J].
Dancer, A ;
Wang, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 260 (01) :75-115
[5]   Classifying superpotentials: Three summands case [J].
Dancer, A. ;
Wang, M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (03) :675-692
[6]   On Ricci solitons of cohomogeneity one [J].
Dancer, Andrew S. ;
Wang, McKenzie Y. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) :259-292
[7]   A Hamiltonian approach to the cohomogeneity one Ricci soliton equations and explicit examples of non-Kahler solitons [J].
de la Parra, Alejandro Betancourt ;
Dancer, Andrew S. ;
Wang, McKenzie Y. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (12)
[8]  
ESCHENBURG JH, 2000, J GEOM ANAL, V10, P109, DOI DOI 10.1007/BF02921808
[9]   New G2-holonomy cones and exotic nearly Kahler structures on S6 and S3 x S3 [J].
Foscolo, Lorenzo ;
Haskins, Mark .
ANNALS OF MATHEMATICS, 2017, 185 (01) :59-130
[10]   EXISTENCE AND NONEXISTENCE OF HOMOGENEOUS EINSTEIN-METRICS [J].
WANG, MY ;
ZILLER, W .
INVENTIONES MATHEMATICAE, 1986, 84 (01) :177-194