Extended Schur functions and bases related by involutions

被引:0
|
作者
Daugherty, Spencer [1 ]
机构
[1] Univ Colorado Boulder, Dept Math, Boulder, CO 80309 USA
关键词
Quasisymmetric; Schur-like; NSym; Hopf algebra; Tableaux;
D O I
10.1016/j.aam.2024.102770
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce two new bases of QSym, , the reverse extended Schur functions and the row-strict reverse extended Schur functions, as well as their duals in NSym, , the reverse shin functions and row-strict reverse shin functions. These bases are the images of the extended Schur basis and shin basis under the involutions rho and w , which generalize the classical involution w on the symmetric functions. In addition, we prove a Jacobi-Trudi rule for certain shin functions using creation operators. We define skew extended Schur functions and skew- II extended Schur functions based on left and right actions of NSym and QSym respectively. We then use the involutions rho and w to translate these and other known results to our reverse and row-strict reverse bases. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:43
相关论文
共 18 条
  • [1] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    Bessenrodt, C.
    van Willigenburg, S.
    ANNALS OF COMBINATORICS, 2013, 17 (02) : 275 - 294
  • [2] Multiplicity Free Schur, Skew Schur, and Quasisymmetric Schur Functions
    C. Bessenrodt
    S. van Willigenburg
    Annals of Combinatorics, 2013, 17 : 275 - 294
  • [3] Quasisymmetric Schur functions
    Haglund, J.
    Luoto, K.
    Mason, S.
    van Willigenburg, S.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 463 - 490
  • [4] Quasisymmetric (k, l)-Hook Schur Functions
    Sarah K. Mason
    Elizabeth Niese
    Annals of Combinatorics, 2018, 22 : 167 - 199
  • [5] Quasisymmetric (k, l)-Hook Schur Functions
    Mason, Sarah K.
    Niese, Elizabeth
    ANNALS OF COMBINATORICS, 2018, 22 (01) : 167 - 199
  • [6] Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions
    Allen, Edward E.
    Hallam, Joshua
    Mason, Sarah K.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 157 : 70 - 108
  • [7] Comultiplication rules for the double Schur functions and Cauchy identities
    Molev, A. I.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01)
  • [8] Determinantal and Pfaffian identities for ninth variation skew Schur functions and Q-functions
    Foley, Angele M.
    King, Ronald C.
    EUROPEAN JOURNAL OF COMBINATORICS, 2021, 93
  • [9] Extended Bressoud-Wei and Koike skew Schur function identities
    Hamel, A. M.
    King, R. C.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2011, 118 (02) : 545 - 557
  • [10] A k-tableau characterization of k-Schur functions
    Lapointe, Luc
    Morse, Jennifer
    ADVANCES IN MATHEMATICS, 2007, 213 (01) : 183 - 204