Improving the oxidation resistance by forming continuous Al2O3 protective layer in alumina-forming austenitic stainless steel

被引:3
作者
Shi, Jiajian [1 ]
Meng, Fanqiang [1 ]
Huang, Guoqiang [1 ,4 ]
Liu, Fangchen [1 ]
Zhai, Lihong [2 ]
Chen, Yingxue [2 ]
Zhang, Feifei [2 ]
Lin, Jiming [2 ]
Wang, Lei [3 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519000, Peoples R China
[2] China Nucl Power Technol Res Inst, Shenzhen 518026, Peoples R China
[3] Northeastern Univ, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Peoples R China
基金
中国国家自然科学基金;
关键词
Alumina-forming austenitic stainless steels; Alumina; Oxidation; Formation mechanism; HIGH-TEMPERATURE OXIDATION; FERRITIC-MARTENSITIC STEEL; CREEP-RESISTANT; SCALE FORMATION; BEHAVIOR; HR3C; PRECIPITATION; STEAM; NI; MECHANISMS;
D O I
10.1016/j.surfcoat.2024.131279
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The effect of varying aluminum (Al) levels on the high-temperature oxidation resistance of Alumina-Forming Austenitic stainless steels (AFA) has been investigated under dry air conditions at 800 degrees C and 900 degrees C. Mass gain assessments indicate that AFA stainless steel containing a higher concentration of Al, with a composition of Fe-20Ni-15Cr-2.4Al-1.6Mn, demonstrates enhanced resistance to oxidation when contrasted with steel of lower Al content, characterized as Fe-23Ni-15Cr-1.9Al. This phenomenon is attributed to the development of a compact CrMn1.5O4 layer on the exterior and an Al2O3 layer on the interior. The dense oxide layers that form on the high- Al steel impede the permeation of oxygen and deter the peeling of the oxide layer, thus preserving structural stability of the material upon exposure to high temperatures. Conversely, the steel with a lower Al content undergoes considerable chipping of its oxide layer. The morphology and distribution of Al(2)O(3 )are determined by the relative rates of oxygen inward movement and aluminum outward movement. In the case of the Fe-20Ni15Cr-2.4Al-1.6Mn steel, the tight oxide film significantly reduces the inward movement of oxygen and increases the outward movement of Al, leading to a denser Al2O3 layer underneath the Cr2O3.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels [J].
Zhou, D. Q. ;
Zhao, W. X. ;
Mao, H. H. ;
Hu, Y. X. ;
Xu, X. Q. ;
Sun, X. Y. ;
Lu, Z. P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 622 :91-100
[42]   Roles of Manganese in the High-temperature Oxidation Resistance of Alumina-forming Austenitic Steels at above 800 °C [J].
Xiangqi Xu ;
Xiaofeng Zhang ;
Xiaoyang Sun ;
Z. P. Lu .
Oxidation of Metals, 2012, 78 :349-362
[43]   Analysis of the initial oxidation layer of W-substituted alumina-forming heat-resistant steel [J].
Ha, Heon-Young ;
Lee, Tae-Ho ;
Kim, Sung-Dae ;
Kang, Jun-Yun ;
Jang, Jae Hoon ;
Moon, Joonoh ;
Jang, Min-Ho ;
Hong, Hyun-Uk .
PHILOSOPHICAL MAGAZINE, 2021, 101 (08) :907-928
[44]   Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J].
Nie, S. H. ;
Chen, Y. ;
Ren, X. ;
Sridharan, K. ;
Allen, T. R. .
JOURNAL OF NUCLEAR MATERIALS, 2010, 399 (2-3) :231-235
[45]   Hot deformation behavior and processing map of a Fe-25Ni-16Cr-3Al alumina-forming austenitic steel [J].
Sun, S. ;
Zhou, Z. ;
Xu, S. ;
Wang, M. .
MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2018, 49 (09) :1135-1144
[46]   Critical Dynamic Recrystallization Model and Nucleation Mechanisms of an Alumina-Forming Austenitic Stainless Steel during Hot Deformation [J].
Zheng, Qi ;
Chen, Leli ;
Luo, Rui ;
Qiu, Yu ;
Peng, Ching-Tun ;
Liu, Tian ;
Cui, Shugang ;
Cao, Yun ;
Gao, Pei ;
Cheng, Xiaonong .
TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2020, 73 (12) :2965-2973
[47]   Role of Cr Content in Microstructure, Creep, and Oxidation Resistance of Alumina-Forming Austenitic Alloys at 850-900 °C [J].
Yamamoto, Yukinori ;
Ren, Qing-Qiang ;
Brady, Michael P. .
METALS, 2022, 12 (05)
[48]   Formation of L12-ordered precipitation in an alumina-forming austenitic stainless steel via Cu addition and its contribution to creep/rupture resistance [J].
Zhao, Bingbing ;
Fan, Jifu ;
Liu, Yize ;
Zhao, Lin ;
Dong, Xianping ;
Sun, Feng ;
Zhang, Lanting .
SCRIPTA MATERIALIA, 2015, 109 :64-67
[49]   On the Loss of Protective Scale Formation in Creep-Resistant, Alumina-Forming Austenitic Stainless Steels at 900°C in Air [J].
Brady, M. P. ;
Yamamoto, Y. ;
Pint, B. A. ;
Santella, M. L. ;
Maziasz, P. J. ;
Walker, L. R. .
HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 7, PTS 1 AND 2, 2008, 595-598 :725-732
[50]   Characterization of the oxide film formed on alumina-forming austenitic stainless steel in deaerated, DH, DO, and OT supercritical water [J].
Gao, Yang ;
Qiu, Xi ;
Su, Haozhan ;
Shi, Huigang ;
Zhang, Lefu ;
Sun, Dayun ;
Zhou, Zhangjian ;
Liang, Tian ;
Guo, Xianglong .
JOURNAL OF NUCLEAR MATERIALS, 2024, 598