Benchmarking transcriptome deconvolution methods for estimating tissue- and cell-type-specific extracellular vesicle abundances

被引:3
作者
Larsen, Jannik Hjortshoj [1 ]
Jensen, Iben Skov [1 ]
Svenningsen, Per [1 ]
机构
[1] Univ Southern Denmark, Dept Mol Med, Odense, Denmark
关键词
cell-conditioned medium; exosome; microvesicle; plasma; single-cell RNA sequencing; transcriptome; urine; MESSENGER-RNA;
D O I
10.1002/jev2.12511
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Extracellular vesicles (EVs) contain cell-derived lipids, proteins and RNAs; however, determining the tissue- and cell-type-specific EV abundances in body fluids remains a significant hurdle for our understanding of EV biology. While tissue- and cell-type-specific EV abundances can be estimated by matching the EV's transcriptome to a tissue's/cell type's expression signature using deconvolutional methods, a comparative assessment of deconvolution methods' performance on EV transcriptome data is currently lacking. We benchmarked 11 deconvolution methods using data from four cell lines and their EVs, in silico mixtures, 118 human plasma and 88 urine EVs. We identified deconvolution methods that estimated cell type-specific abundances of pure and in silico mixed cell line-derived EV samples with high accuracy. Using data from two urine EV cohorts with different EV isolation procedures, four deconvolution methods produced highly similar results. The three methods were also concordant in their tissue- and cell-type-specific plasma EV abundance estimates. We identified driving factors for deconvolution accuracy and highlighted the importance of implementing biological knowledge in creating the tissue/cell type signature. Overall, our analyses demonstrate that the deconvolution algorithms DWLS and CIBERSORTx produce highly similar and accurate estimates of tissue- and cell-type-specific EV abundances in biological fluids.
引用
收藏
页数:16
相关论文
共 41 条
[1]   Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer [J].
Almeida, Anna ;
Gabriel, Marc ;
Firlej, Virginie ;
Martin-Jaular, Lorena ;
Lejars, Matthieu ;
Cipolla, Rocco ;
Petit, Floriane ;
Vogt, Nicolas ;
San-Roman, Mabel ;
Dingli, Florent ;
Loew, Damarys ;
Destouches, Damien ;
Vacherot, Francis ;
de la Taille, Alexandre ;
Thery, Clotilde ;
Morillon, Antonin .
JOURNAL OF EXTRACELLULAR VESICLES, 2022, 11 (05)
[2]  
Auber M, 2022, J EXTRACELL BIOL, V1, DOI 10.1002/jex2.46
[3]   Proteomic Analysis of Exosomes from Mutant KRAS Colon Cancer Cells Identifies Intercellular Transfer of Mutant KRAS [J].
Beckler, Michelle Demory ;
Higginbotham, James N. ;
Franklin, Jeffrey L. ;
Ham, Amy-Joan ;
Halvey, Patrick J. ;
Imasuen, Imade E. ;
Whitwell, Corbin ;
Li, Ming ;
Liebler, Daniel C. ;
Coffey, Robert J. .
MOLECULAR & CELLULAR PROTEOMICS, 2013, 12 (02) :343-355
[4]   Nephron mass determines the excretion rate of urinary extracellular vesicles [J].
Blijdorp, Charles J. ;
Hartjes, Thomas A. ;
Wei, Kuang-Yu ;
van Heugten, Martijn H. ;
Bovee, Dominique M. ;
Budde, Ricardo P. J. ;
van de Wetering, Jacqueline ;
Hoenderop, Joost G. J. ;
van Royen, Martin E. ;
Zietse, Robert ;
Severs, David ;
Hoorn, Ewout J. .
JOURNAL OF EXTRACELLULAR VESICLES, 2022, 11 (01)
[5]   Benchmarking long-read RNA-sequencing analysis tools using in silico mixtures [J].
Dong, Xueyi ;
Du, Mei R. M. ;
Gouil, Quentin ;
Tian, Luyi ;
Jabbari, Jafar S. ;
Bowden, Rory ;
Baldoni, Pedro L. ;
Chen, Yunshun ;
Smyth, Gordon K. ;
Amarasinghe, Shanika L. ;
Law, Charity W. ;
Ritchie, Matthew E. .
NATURE METHODS, 2023, 20 (11) :1810-1821
[6]   Genome-wide mRNA profiling in urinary extracellular vesicles reveals stress gene signature for diabetic kidney disease [J].
Dwivedi, Om Prakash ;
Barreiro, Karina ;
Karajamaki, Annemari ;
Valo, Erkka ;
Giri, Anil K. ;
Prasad, Rashmi B. ;
Roy, Rishi Das ;
Thorn, Lena M. ;
Rannikko, Antti ;
Holthoefer, Harry ;
Gooding, Kim M. ;
Sourbron, Steven ;
Delic, Denis ;
Gomez, Maria F. ;
Groop, Per-Henrik ;
Tuomi, Tiinamaija ;
Forsblom, Carol ;
Groop, Leif ;
Puhka, Maija .
ISCIENCE, 2023, 26 (05)
[7]   Gene Expression Omnibus: NCBI gene expression and hybridization array data repository [J].
Edgar, R ;
Domrachev, M ;
Lash, AE .
NUCLEIC ACIDS RESEARCH, 2002, 30 (01) :207-210
[8]   Extracellular vesicle secretion is tissue-dependent ex vivo and skeletal muscle myofiber extracellular vesicles reach the circulation in vivo [J].
Estrada, Andrea L. ;
Valenti, Zackary J. ;
Hehn, Gabriella ;
Amorese, Adam J. ;
Williams, Nicholas S. ;
Balestrieri, Nicholas P. ;
Deighan, Clayton ;
Allen, Christopher P. ;
Spangenburg, Espen E. ;
Kruh-Garcia, Nicole A. ;
Lark, Daniel S. .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2022, 322 (02) :C246-C259
[9]   Tissue differences in the exosomal/small extracellular vesicle proteome and their potential as indicators of altered tissue metabolism [J].
Garcia-Martin, Ruben ;
Brandao, Bruna Brasil ;
Thomou, Thomas ;
Altindis, Emrah ;
Kahn, C. Ronald .
CELL REPORTS, 2022, 38 (03)
[10]   MicroRNA sequence codes for small extracellular vesicle release and cellular retention [J].
Garcia-Martin, Ruben ;
Wang, Guoxiao ;
Brandao, Bruna B. ;
Zanotto, Tamires M. ;
Shah, Samah ;
Patel, Sandip Kumar ;
Schilling, Birgit ;
Kahn, C. Ronald .
NATURE, 2022, 601 (7893) :446-+