Privacy-Preserving and Secure Industrial Big Data Analytics: A Survey and the Research Framework

被引:2
作者
Liu, Linbin [1 ]
Li, June [1 ]
Lv, Jianming [2 ]
Wang, Juan [1 ]
Zhao, Siyu [1 ]
Lu, Qiuyu [1 ]
机构
[1] Wuhan Univ, Key Lab Aerosp Informat Secur & Trusted Comp, Minist Educ, Sch Cyber Sci & Engn, Wuhan 430072, Peoples R China
[2] South China Univ Technol, Inst Comp Technol, Chinese Acad Sci, Guangzhou 510641, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 11期
基金
美国国家科学基金会;
关键词
Blockchain; data analytics; data sharing and trading (DS&T); federated learning (FL); industrial big data (IBD); privacy and security; BLOCKCHAIN;
D O I
10.1109/JIOT.2024.3353727
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of the Industrial Internet will generate a large amount of valuable data, known as industrial big data (IBD). By mining and utilizing IBD, enterprises can improve production efficiency, reduce costs and risks, optimize management processes, and innovate services and business models. However, IBD comes from various institutions in all walks of life and has features such as multisource, heterogeneity, and multimodality. And data sharing and trading (DS&T) occur in the Industrial Internet environment without mutual trust. These characteristics pose new challenges to analytics methods and privacy and security protection technologies. Therefore, this article aims to provide references for privacy-preserving and secure industrial big data analytics (IBDA) from three perspectives: 1) research framework; 2) platform architecture; and 3) key technologies. First, we review the current state of research on theories and technologies related to IBDA. Then, we reveal three challenges to secure and efficient IBDA. We take the analytics and utilization of IBD as systematic engineering, propose the research framework for privacy-preserving and secure IBDA, and point out the specific content to be studied. Further, we design the architecture of the IBDA platform with the idea of layering, including a function model, security architecture, and system architecture. Finally, detailed research proposals and potential technologies for IBD analytics and utilization are presented from three aspects: 1) data fusion and analytics; 2) data privacy and security protection; and 3) blockchain.
引用
收藏
页码:18976 / 18999
页数:24
相关论文
共 50 条
  • [1] Systematic Survey: Secure and Privacy-Preserving Big Data Analytics in Cloud
    Amaithi Rajan, Arun
    Vetriselvi, V.
    JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2024, 64 (01) : 136 - 156
  • [2] A Practical Framework for Privacy-Preserving Data Analytics
    Fan, Liyue
    Jin, Hongxia
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW 2015), 2015, : 311 - 321
  • [3] An Efficient and Privacy-preserving Similarity Evaluation For Big Data Analytics
    Gheid, Zakaria
    Challal, Yacine
    2015 IEEE/ACM 8TH INTERNATIONAL CONFERENCE ON UTILITY AND CLOUD COMPUTING (UCC), 2015, : 281 - 289
  • [4] Privacy-Preserving Mechanism for Data Analytics
    Anuar, Norsyahirah Binti Khairul
    Abu Bakar, Asmidar Binti
    Abu Bakar, Aishah Binti
    PROCEEDINGS OF SEVENTH INTERNATIONAL CONGRESS ON INFORMATION AND COMMUNICATION TECHNOLOGY, VOL 4, 2023, 465 : 683 - 691
  • [5] Big Data Analytics Framework for Predictive Analytics using Public Data with Privacy Preserving
    Ho, Duy H.
    Lee, Yugyung
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 5395 - 5405
  • [6] Secure authentication and privacy-preserving blockchain for industrial internet of things
    Sharma, Prakash Chandra
    Mahmood, Md Rashid
    Raja, Hiral
    Yadav, Narendra Singh
    Gupta, Brij B.
    Arya, Varsha
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [7] A Review of Secure and Privacy-Preserving Medical Data Sharing
    Jin, Hao
    Luo, Yan
    Li, Peilong
    Mathew, Jomol
    IEEE ACCESS, 2019, 7 : 61656 - 61669
  • [8] Privacy-Preserving Healthcare Analytics of Trajectory Data
    Leung, Carson K.
    Olawoyin, Anifat M.
    Wen, Qi
    WEB AND BIG DATA, APWEB-WAIM 2021, PT II, 2021, 12859 : 414 - 420
  • [9] TRUSTEE: Towards the creation of secure, trustworthy and privacy-preserving framework
    Sayeed, Sarwar
    Pitropakis, Nikolaos
    Buchanan, William J.
    Markakis, Evangelos
    Papatsaroucha, Dimitra
    Politis, Ilias
    18TH INTERNATIONAL CONFERENCE ON AVAILABILITY, RELIABILITY & SECURITY, ARES 2023, 2023,
  • [10] EVENTCHAIN: A Blockchain Framework for Secure, Privacy-Preserving Event Verification
    Schwarz-Ruesch, Signe
    Behlendorf, Michael
    Becker, Markus
    Kudlek, Rene
    Mohamed, Hesham Hosney Elsayed
    Schoenitz, Felix
    Jehl, Leander
    Kapitza, Rudiger
    PROCEEDINGS OF THE TWENTY-THIRD ACM/IFIP INTERNATIONAL MIDDLEWARE CONFERENCE, MIDDLEWARE 2022, 2022, : 174 - 187