DEPDet: A Cross-Spatial Multiscale Lightweight Network for Ship Detection of SAR Images in Complex Scenes

被引:0
|
作者
Zhang, Jing [1 ]
Deng, Fan [1 ]
Wang, Yonghua [2 ]
Gong, Jie [2 ]
Liu, Ziyang [1 ]
Liu, Wenjun [1 ]
Zeng, Yinmei [1 ]
Chen, Zeqiang [3 ]
机构
[1] Yangtze Univ, Sch Geosci, Wuhan 430100, Peoples R China
[2] Wuhan Huaxin Lianchuang Technol Engn Co Ltd, Wuhan 430074, Peoples R China
[3] China Univ Geosci, Natl Engn Res Ctr Geog Informat Syst, Wuhan 430074, Peoples R China
关键词
Marine vehicles; Feature extraction; Accuracy; Convolution; Computational modeling; Deep learning; Real-time systems; Radar polarimetry; Hardware; Extensibility; Complex scenes; cross-spatial multiscale convolution (CSMSConv); lightweight network; multiscale ships; synthetic aperture radar (SAR);
D O I
10.1109/JSTARS.2024.3469209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nowadays, the intricate nature of synthetic aperture radar (SAR) ship scenes, coupled with the presence of multiscale targets, poses a significant challenge in detection accuracy. Furthermore, to reduce the financial outlay on hardware, there is also a considerable challenge in lightweighting the model. In order to resolve the aforementioned concerns, we propose a cross-spatial multiscale lightweight network, designated as DEPDet. First, a new efficient multiscale detection backbone network DEMNet is redesigned. To improve the feature extraction capability of the network, a cross-spatial multiscale convolution (CSMSConv) is designed and a new CSMSConv module CSMSC2F is constructed. Meanwhile, we introduce an efficient multiscale attention module. DEMNet is capable of more effectively extracting information pertaining to multiscale ships. Moreover, to enhance the fusion of features at diverse scales, we design a new path aggregation feature pyramid network DEPAFPN, which combines deformable convolution and CSMSC2F. Finally, we introduce partial convolution to construct a lightweight detection head module PCHead, which can be employed to extract spatial features with greater efficiency. The publicly available SAR ship datasets, SAR Ship Detection Dataset and High-Resolution SAR Image Dataset, are employed for the purpose of conducting experiments. The mean average precision (mAP) obtained was 98.2% (+1.4%) and 91.6% (+1.6%), respectively. The F1 obtained 0.950 (+1.7%) and 0.871 (+1.4%), respectively. Concurrently, the Params decreased from 3.2M to 2.1M, a decrease of approximately 34%. The floating-point operations (FLOPs) decreased from 8.7G to 4.5G, a decrease of approximately 48%. The experimental results indicate that the network achieves an effective balance between detection accuracy and lightweight effect with good generalization and extensibility.
引用
收藏
页码:18182 / 18198
页数:17
相关论文
共 50 条
  • [1] A LIGHTWEIGHT NETWORK FOR MULTISCALE SAR SHIP DETECTION UNDER COMPLEX IMAGERY BACKGROUNDS
    Yu, Hang
    Yang, Shihang
    Liu, Zhiheng
    Zhou, Suiping
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6406 - 6409
  • [2] A Lightweight Convolutional Neural Network for Ship Target Detection in SAR Images
    Hao, Yisheng
    Zhang, Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (02) : 1882 - 1898
  • [3] Ship Detection Algorithm for SAR Images Based on Lightweight Convolutional Network
    Wang, Yun
    Shi, Hao
    Chen, Liang
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2022, 50 (05) : 867 - 876
  • [4] Ship Detection Algorithm for SAR Images Based on Lightweight Convolutional Network
    Yun Wang
    Hao Shi
    Liang Chen
    Journal of the Indian Society of Remote Sensing, 2022, 50 : 867 - 876
  • [5] A Ship Detection Method from Lightweight SAR Images under Complex Backgrounds
    Gao, Ding
    Li, Ming
    Fan, Dazhao
    Dong, Yang
    Li, Zhixin
    Wang, Ren
    Journal of Geo-Information Science, 2024, 26 (11) : 2612 - 2625
  • [6] A Lightweight Model for Ship Detection and Recognition in Complex-Scene SAR Images
    Xiong, Boli
    Sun, Zhongzhen
    Wang, Jin
    Leng, Xiangguang
    Ji, Kefeng
    REMOTE SENSING, 2022, 14 (23)
  • [7] MULTISCALE SHIP DETECTION BASED ON DENSE ATTENTION PYRAMID NETWORK IN SAR IMAGES
    Li, Qi
    Min, Rui
    Cui, Zongyong
    Pi, Yiming
    Xu, Zhengwu
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5 - 8
  • [8] LASDNET: A LIGHTWEIGHT ANCHOR-FREE SHIP DETECTION NETWORK FOR SAR IMAGES
    Zhou, Lifan
    Yu, Hanwen
    Wang, Yong
    Xu, Shaojie
    Gong, Shengrong
    Xing, Mengdao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2630 - 2633
  • [9] A Novel Deep Learning Network with Deformable Convolution and Attention Mechanisms for Complex Scenes Ship Detection in SAR Images
    Chen, Peng
    Zhou, Hui
    Li, Ying
    Liu, Peng
    Liu, Bingxin
    REMOTE SENSING, 2023, 15 (10)
  • [10] Adaptive Cross-Spatial Sensing Network for Change Detection
    Jin, Liyuan
    Zhang, Yanduo
    Lu, Tao
    Wang, Jiaming
    PATTERN RECOGNITION AND COMPUTER VISION, PT XIII, PRCV 2024, 2025, 15043 : 371 - 385