Differential Model-Based Parameter Estimation of IPMSMs From Multi-State Measurements

被引:0
作者
Cheng, Hongfu [1 ]
Deshpande, Uday [2 ]
Kar, Narayan C. [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] D&V Elect Ltd, Woodbridge, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Torque; Parameter estimation; Accuracy; Estimation; Couplings; Mathematical models; Steady-state; Differential model; interior permanent magnet synchronous machines (IPMSMs); least square algorithm; magnetic saturation; parameter estimation; voltage source inverter (VSI) nonlinearity; MULTIPARAMETER ESTIMATION; PMSM; VSI;
D O I
10.1109/TMAG.2024.3413539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate parameter estimations are essential for efficient operation and high performance of interior permanent magnet synchronous machines (IPMSMs). Voltage source inverter (VSI) nonlinearity can adversely affect parameter estimation in IPMSM drive systems. Cross influence can compromise the accuracy of parameter estimation. This article proposes a differential model-based decoupling scheme to eliminate VSI nonlinearity effects and cross influence for accurately estimating key IPMSM parameters, including permanent magnet (PM) flux linkage, winding resistance, and machine inductances. The adverse effect of measurement noise and observational error on parameter estimation can be reduced in the proposed differential model. Utilizing the decoupling scheme, each parameter is estimated individually with high efficiency and accuracy leveraging the least square algorithm. The proposed differential model-based decoupling scheme is particularly well-suited for accurately estimating parameters over a wide speed range and diverse load conditions. The estimated parameters can improve the accuracy of predicting electromagnetic torque. Furthermore, the proposed method is noninvasive, robust, and does not require extra signal injection.
引用
收藏
页数:6
相关论文
共 15 条
  • [1] Brescia E., 2021, P INT C EL COMP EN T, P1
  • [2] Brosch A., "IEEE Trans. Ind. Informat., V17, P8080
  • [3] PMSM Parameter Estimation for Sensorless FOC Based on Differential Power Factor
    Candelo-Zuluaga, Carlos
    Riba, Jordi-Roger
    Garcia, Antoni
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [4] Candelo-Zuluaga C, 2020, IEEE IND ELEC, P1584, DOI [10.1109/IECON43393.2020.9254966, 10.1109/iecon43393.2020.9254966]
  • [5] Multi-Parameter Estimation of PMSM Using Differential Model With Core Loss Compensation
    Feng, Guodong
    Lai, Chunyan
    Tan, Xiaojun
    Peng, Weiwen
    Kar, Narayan C.
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 1105 - 1115
  • [6] Flux Linkage Tracking-Based Permanent Magnet Temperature Hybrid Modeling and Estimation for PMSMs With Data-Driven-Based Core Loss Compensation
    Huang, Kaide
    Ding, Beichen
    Lai, Chunyan
    Feng, Guodong
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2024, 39 (01) : 1410 - 1421
  • [7] Nonlinearity estimation and compensation of PWM VSI for PMSM under resistance and flux linkage uncertainty
    Kim, Hag-Wone
    Youn, Myung-Joong
    Cho, Kwan-Yuhl
    Kim, Hyun-Soo
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2006, 14 (04) : 589 - 601
  • [8] Computation-Efficient Decoupled Multiparameter Estimation of PMSMs From Massive Redundant Measurements
    Lai, Chunyan
    Feng, Guodong
    Li, Ze
    Kar, Narayan C.
    [J]. IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (10) : 10729 - 10740
  • [9] Li W., 2022, IEEE Trans. Magn., V58, P15
  • [10] Current Injection-Based Multi-parameter Estimation for Dual Three-Phase IPMSM Considering VSI Nonlinearity
    Li, Ze
    Feng, Guodong
    Lai, Chunyan
    Banerjee, Debmalya
    Li, Wenlong
    Kar, Narayan C.
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2019, 5 (02): : 405 - 415