Potential Therapeutic Interventions Targeting NAD+ Metabolism for ALS

被引:0
|
作者
Lundt, Samuel [1 ]
Ding, Shinghua [1 ,2 ]
机构
[1] Dalton Cardiovasc Res Ctr DCRC, Columbia, MO 65203 USA
[2] Univ Missouri, Dept Chem & Biomed Engn ChBME, Columbia, MO 65211 USA
关键词
NAD(+); NADase; ALS; motor neuron; NMJ; MOUSE MODEL; IN-VIVO; CLEAVAGE ACTIVITY; AXONAL-TRANSPORT; SALVAGE PATHWAY; TIR DOMAINS; CELL-DEATH; NICOTINAMIDE; BRAIN; MITOCHONDRIAL;
D O I
10.3390/cells13171509
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting both upper and lower motor neurons. While there have been many potential factors implicated for ALS development, such as oxidative stress and mitochondrial dysfunction, no exact mechanism has been determined at this time. Nicotinamide adenine dinucleotide (NAD(+)) is one of the most abundant metabolites in mammalian cells and is crucial for a broad range of cellular functions from DNA repair to energy homeostasis. NAD(+) can be synthesized from three different intracellular pathways, but it is the NAD(+) salvage pathway that generates the largest proportion of NAD+. Impaired NAD(+) homeostasis has been connected to aging and neurodegenerative disease-related dysfunctions. In ALS mice, NAD(+) homeostasis is potentially disrupted prior to the appearance of physical symptoms and is significantly reduced in the nervous system at the end stage. Treatments targeting NAD(+) metabolism, either by administering NAD+ precursor metabolites or small molecules that alter NAD(+)-dependent enzyme activity, have shown strong beneficial effects in ALS disease models. Here, we review the therapeutic interventions targeting NAD(+) metabolism for ALS and their effects on the most prominent pathological aspects of ALS in animal and cell models.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] NAD+ Metabolism and Interventions in Premature Renal Aging and Chronic Kidney Disease
    Chanvillard, Lucie
    Tammaro, Alessandra
    Sorrentino, Vincenzo
    CELLS, 2023, 12 (01)
  • [22] Targeting Sirtuin 1 to Improve Metabolism: All You Need Is NAD+?
    Canto, Carles
    Auwerx, Johan
    PHARMACOLOGICAL REVIEWS, 2012, 64 (01) : 166 - 187
  • [23] Emerging potential benefits of modulating NAD+ metabolism in cardiovascular disease
    Matasic, Daniel S.
    Brenner, Charles
    London, Barry
    AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2018, 314 (04): : H839 - H852
  • [24] The therapeutic promises of NAD+ boosters
    Montllor-Albalate, Claudia
    Song, Zehan
    Chen, Danica
    CELL METABOLISM, 2021, 33 (07) : 1274 - 1275
  • [25] NAD+ in aging, metabolism, and neurodegeneration
    Verdin, Eric
    SCIENCE, 2015, 350 (6265) : 1208 - 1213
  • [26] Pathway analysis of NAD+ metabolism
    de Figueiredo, Luis F.
    Gossmann, Toni I.
    Ziegler, Mathias
    Schuster, Stefan
    BIOCHEMICAL JOURNAL, 2011, 439 : 341 - 348
  • [27] NAD+ Metabolism in Aging and Cancer
    Demarest, Tyler G.
    Babbar, Mansi
    Okur, Mustafa N.
    Dan, Xiuli
    Croteau, Deborah L.
    Fakouri, Nima B.
    Mattson, Mark P.
    Bohr, Vilhelm A.
    ANNUAL REVIEW OF CANCER BIOLOGY, VOL 3, 2019, 3 : 105 - 130
  • [28] Evolving concepts in NAD+ metabolism
    Chini, Claudia C. S.
    Zeidler, Julianna D.
    Kashyap, Sonu
    Warner, Gina
    Chini, Eduardo Nunes
    CELL METABOLISM, 2021, 33 (06) : 1076 - 1087
  • [29] NAD+ metabolism in health and disease
    Belenky, Peter
    Bogan, Katrina L.
    Brenner, Charles
    TRENDS IN BIOCHEMICAL SCIENCES, 2007, 32 (01) : 12 - 19
  • [30] Evaluation of the NAD+ biosynthetic pathway in ALS patients and effect of modulating NAD+ levels in hSOD1-linked ALS mouse models
    Harlan, Benjamin A.
    Killoy, Kelby M.
    Pehar, Mariana
    Liu, Liping
    Auwerx, Johan
    Vargas, Marcelo R.
    EXPERIMENTAL NEUROLOGY, 2020, 327