Thermal runaway of Li-ion batteries caused by hemispherical indentation under different temperatures: Battery deformation and fracture

被引:10
作者
Bai, Jinlong [1 ,2 ]
Wang, Zhirong [1 ]
Weragoda, Delika M. [3 ]
Tian, Guohong [3 ]
Cai, Qiong [2 ]
机构
[1] Nanjing Tech Univ, Coll Safety Sci & Engn, Jiangsu Key Lab Hazardous Chem Safety & Control, Nanjing 211816, Peoples R China
[2] Univ Surrey, Fac Engn & Phys Sci, Sch Chem & Chem Engn, Guildford GU2 7XH, England
[3] Univ Surrey, Fac Engn & Phys Sci, Sch Mech Engn Sci, Guildford GU2 7XH, England
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Mechanical abuse; Structure failure; Internal short circuit; Thermal runaway; INTERNAL SHORT; BEHAVIOR; ELECTROLYTE; ANODE; MECHANISM; FAILURE; STATE;
D O I
10.1016/j.jpowsour.2024.235293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal runaway (TR) of Li-ion batteries (LIBs) presents a disastrous safety hazard and a significant barrier to the wider adoption of electric vehicles (EVs). Internal short circuit (ISC) induced by mechanical abuse is one of the causes of battery TR. This paper uses hemispherical indentation tests to trigger ISC in the battery at different temperatures and studies the battery deformation and fracture mode. Results show as the initial temperature increases, the battery hardness and strength decrease, and the fracture mode of the laminar structure changes from shear fracture to localized rupture. In the shear fracture mode, the ISC homogeneously heats the battery, and it does not directly trigger TR. In the localized rupture mode, the ISC is only induced at the layers close to the indenter and generates a hot spot exceeding 200 degrees C, leading to the initiation of TR. Therefore, the mechanical properties of batteries under different conditions need to be studied in more detail to develop batteries that are safer under mechanical abuse.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Development of PLA/graphite based anode material with styrene-butadiene rubber/carboxy methylcellulose binder for Li-ion battery using film casting [J].
Akilan, I ;
Velmurugan, C. .
SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (02)
[2]   Effect of mechanical extrusion force on thermal runaway of lithium-ion batteries caused by flat heating [J].
Bai, Jinlong ;
Wang, Zhirong ;
Gao, Tianfeng ;
Bai, Wei ;
Wang, Junling .
JOURNAL OF POWER SOURCES, 2021, 507
[3]   Experimental analysis and safety assessment of thermal runaway behavior in lithium iron phosphate batteries under mechanical abuse [J].
Chai, Zhixiong ;
Li, Junqiu ;
Liu, Ziming ;
Liu, Zhengnan ;
Jin, Xin .
SCIENTIFIC REPORTS, 2024, 14 (01)
[4]   Failure in lithium-ion batteries under transverse indentation loading [J].
Chung, Seung Hyun ;
Tancogne-Dejean, Thomas ;
Zhu, Juner ;
Luo, Hailing ;
Wierzbicki, Tomasz .
JOURNAL OF POWER SOURCES, 2018, 389 :148-159
[5]   Effects of electrolyte, loading rate and location of indentation on mechanical integrity of li-ion pouch cells [J].
Dixon, Brandy ;
Mason, Amber ;
Sahraei, Elham .
JOURNAL OF POWER SOURCES, 2018, 396 :412-420
[6]   Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: A review [J].
Duh, Yih-Shing ;
Sun, Yujie ;
Lin, Xin ;
Zheng, Jiaojiao ;
Wang, Mingchen ;
Wang, Yongjing ;
Lin, Xiaoying ;
Jiang, Xiaoyu ;
Zheng, Zhigong ;
Zheng, Shuo ;
Yu, Gending .
JOURNAL OF ENERGY STORAGE, 2021, 41
[7]   Key Characteristics for Thermal Runaway of Li-ion Batteries [J].
Feng, Xuning ;
Zheng, Siqi ;
Ren, Dongsheng ;
He, Xiangming ;
Wang, Li ;
Liu, Xiang ;
Li, Maogang ;
Ouyang, Minggao .
INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 :4684-4689
[8]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267
[9]   Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry [J].
Feng, Xuning ;
Fang, Mou ;
He, Xiangming ;
Ouyang, Minggao ;
Lu, Languang ;
Wang, Hao ;
Zhang, Mingxuan .
JOURNAL OF POWER SOURCES, 2014, 255 :294-301
[10]  
George SC, 2000, J APPL POLYM SCI, V78, P1280, DOI 10.1002/1097-4628(20001107)78:6<1280::AID-APP150>3.0.CO