Parallel Approaches to Accelerate Deep Learning Processes Using Heterogeneous Computing

被引:0
作者
Nasimov, Rashid [1 ]
Rakhimov, Mekhriddin [2 ]
Javliev, Shakhzod [2 ]
Abdullaeva, Malika [2 ]
机构
[1] Tashkent State Univ Econ, Tashkent, Uzbekistan
[2] Tashkent Univ Informat Technol, Tashkent, Uzbekistan
来源
INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, PT II, NEW2AN 2023, RUSMART 2023 | 2024年 / 14543卷
关键词
artificial intelligence; deep learning; heterogeneous computing systems; OpenCL; CUDA technology; parallel processing;
D O I
10.1007/978-3-031-60997-8_4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the current context, the rise of artificial intelligence (AI) emphasizes the need to expedite training procedures, especially when dealing with extensive data, particularly in deep learning. This research primarily aims to significantly improve the time efficiency of deep learning processes. While it's widely recognized that graphics processing units (GPUs) offer notably faster performance for specific data tasks compared to a computer's central processing unit (CPU), this study explores heterogeneous computing systems for situations where GPUs are unavailable. Here, we investigate strategies to achieve enhanced processing speed using advanced technologies. The study concludes by presenting comparative results from various approaches and providing important recommendations for future endeavors.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [41] Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches-A Critical Review
    Gerakari, Maria
    Katsileros, Anastasios
    Kleftogianni, Konstantina
    Tani, Eleni
    Bebeli, Penelope J.
    Papasotiropoulos, Vasileios
    AGRONOMY-BASEL, 2025, 15 (03):
  • [42] Accelerate SOMA Using Parallel Processing in GPGPU
    Tran Trong Dao
    Nguyen Mau Toan
    Vo Hoang Duy
    Zelinka, Ivan
    AETA 2016: RECENT ADVANCES IN ELECTRICAL ENGINEERING AND RELATED SCIENCES: THEORY AND APPLICATION, 2017, 415 : 53 - 62
  • [43] Emotion Recognition for Cognitive Edge Computing Using Deep Learning
    Muhammad, Ghulam
    Hossain, M. Shamim
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (23) : 16894 - 16901
  • [44] Wind Prediction Using Deep Learning and High Performance Computing
    Manero, Jaume
    Bejar, Javier
    Cortes, Ulises
    HIGH PERFORMANCE COMPUTING, CARLA 2021, 2022, 1540 : 193 - 207
  • [45] Convergence of Deep Learning and Edge Computing using Model Optimization
    Babaei, Peyman
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 130 - 135
  • [46] Soft Sensing of LPG Processes Using Deep Learning
    Sifakis, Nikolaos
    Sarantinoudis, Nikolaos
    Tsinarakis, George
    Politis, Christos
    Arampatzis, George
    SENSORS, 2023, 23 (18)
  • [47] A heterogeneous implementation for plant disease identification using deep learning
    Theodora Sanida
    Dimitris Tsiktsiris
    Argyrios Sideris
    Minas Dasygenis
    Multimedia Tools and Applications, 2022, 81 : 15041 - 15059
  • [48] A comparative evaluation of deep learning approaches for ophthalmology
    Linde, Glenn
    de Souza Jr, Waldir Rodrigues
    Chalakkal, Renoh
    Danesh-Meyer, Helen V.
    O'Keeffe, Ben
    Chiong Hong, Sheng
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [49] A heterogeneous implementation for plant disease identification using deep learning
    Sanida, Theodora
    Tsiktsiris, Dimitris
    Sideris, Argyrios
    Dasygenis, Minas
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (11) : 15041 - 15059
  • [50] Parallel virtual savant for the heterogeneous computing scheduling problem
    Carlos de la Torre, Juan
    Massobrio, Renzo
    Ruiz, Patricia
    Nesmachnow, Sergio
    Dorronsoro, Bernabe
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 39