Parallel Approaches to Accelerate Deep Learning Processes Using Heterogeneous Computing

被引:0
作者
Nasimov, Rashid [1 ]
Rakhimov, Mekhriddin [2 ]
Javliev, Shakhzod [2 ]
Abdullaeva, Malika [2 ]
机构
[1] Tashkent State Univ Econ, Tashkent, Uzbekistan
[2] Tashkent Univ Informat Technol, Tashkent, Uzbekistan
来源
INTERNET OF THINGS, SMART SPACES, AND NEXT GENERATION NETWORKS AND SYSTEMS, PT II, NEW2AN 2023, RUSMART 2023 | 2024年 / 14543卷
关键词
artificial intelligence; deep learning; heterogeneous computing systems; OpenCL; CUDA technology; parallel processing;
D O I
10.1007/978-3-031-60997-8_4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In the current context, the rise of artificial intelligence (AI) emphasizes the need to expedite training procedures, especially when dealing with extensive data, particularly in deep learning. This research primarily aims to significantly improve the time efficiency of deep learning processes. While it's widely recognized that graphics processing units (GPUs) offer notably faster performance for specific data tasks compared to a computer's central processing unit (CPU), this study explores heterogeneous computing systems for situations where GPUs are unavailable. Here, we investigate strategies to achieve enhanced processing speed using advanced technologies. The study concludes by presenting comparative results from various approaches and providing important recommendations for future endeavors.
引用
收藏
页码:32 / 41
页数:10
相关论文
共 50 条
  • [21] On Realizing Efficient Deep Learning Using Serverless Computing
    Assogba, Kevin
    Arif, Moiz
    Rafique, M. Mustafa
    Nikolopoulos, Dimitrios S.
    2022 22ND IEEE/ACM INTERNATIONAL SYMPOSIUM ON CLUSTER, CLOUD AND INTERNET COMPUTING (CCGRID 2022), 2022, : 220 - 229
  • [22] Integrating Heterogeneous Datasets by Using Multimodal Deep Learning
    Khoshghalbvash, Fariba
    Gao, Jean X.
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL III: SYSTEMS, 2020, 517 : 279 - 285
  • [23] Deep learning parallel computing and evaluation for embedded system clustering architecture processor
    Yue Zu
    Design Automation for Embedded Systems, 2020, 24 : 145 - 159
  • [24] Parallel and deep reservoir computing using semiconductor lasers with optical feedback
    Hasegawa, Hiroshi
    Kanno, Kazutaka
    Uchida, Atsushi
    NANOPHOTONICS, 2023, 12 (05) : 869 - 881
  • [25] The Use of Parallel Computing to Accelerate Fire Simulations for Cultural Heritage Buildings
    Huang, Yu-Hsiang
    SUSTAINABILITY, 2020, 12 (23) : 1 - 10
  • [26] Deep learning tools to accelerate antibiotic discovery
    Cesaro, Angela
    Bagheri, Mojtaba
    Torres, Marcelo
    Wan, Fangping
    de la Fuente-Nunez, Cesar
    EXPERT OPINION ON DRUG DISCOVERY, 2023, : 1245 - 1257
  • [27] Exploiting Typical Values to Accelerate Deep Learning
    Moshovos, Andreas
    Albericio, Jorge
    Judd, Patrick
    Lascorz, Alberto Delmas
    Sharify, Sayeh
    Poulos, Zissis
    Hetherington, Tayler
    Aamodt, Tor
    Jerger, Natalie Enright
    COMPUTER, 2018, 51 (05) : 18 - 30
  • [28] Ransomware Detection using Machine and Deep Learning Approaches
    Alsaidi, Ramadhan A. M.
    Yafooz, Wael M. S.
    Alolofi, Hashem
    Taufiq-Hail, Ghilan Al-Madhagy
    Emara, Abdel-Hamid M.
    Abdel-Wahab, Ahmed
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 112 - 119
  • [29] Sentiment analysis using deep learning approaches: an overview
    Olivier Habimana
    Yuhua Li
    Ruixuan Li
    Xiwu Gu
    Ge Yu
    Science China Information Sciences, 2020, 63
  • [30] Sentiment analysis using deep learning approaches:an overview
    Olivier HABIMANA
    Yuhua LI
    Ruixuan LI
    Xiwu GU
    Ge YU
    Science China(Information Sciences), 2020, 63 (01) : 21 - 56