Painlevé analysis of the resonant third-order nonlinear Schrödinger equation

被引:6
|
作者
Kudryashov, Nikolay A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, Dept Appl Math, 31 Kashirskoe Shosse, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
Resonant third-order nonlinear Schr & ouml; dinger; equation; Painlev & eacute; test; Integrability; Solitary and periodic wave; SCHRODINGER-EQUATION; SOLITON-SOLUTIONS; OPTICAL SOLITONS; PROPAGATION; PULSE;
D O I
10.1016/j.aml.2024.109232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The resonant Schr & ouml;dinger equation of the third order is studied. The Painlev & eacute; test for nonlinear partial differential equations is used to determine integrability of equation. It is shown that the necessary condition for integrability of partial differential equations by the inverse scattering transform is fulfilled at certain parameter restriction. Analytical solutions in the form of periodic and solitary wave are presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Painlevé Analysis of the Traveling Wave Reduction of the Third-Order Derivative Nonlinear Schrödinger Equation
    Kudryashov, Nikolay A.
    Lavrova, Sofia F.
    MATHEMATICS, 2024, 12 (11)
  • [2] The extended third-order nonlinear Schrödinger equation and Galilean transformation
    V. I. Karpman
    The European Physical Journal B - Condensed Matter and Complex Systems, 2004, 39 : 341 - 350
  • [3] Fundamental Solutions for the Generalised Third-Order Nonlinear Schrödinger Equation
    Abdelrahman M.A.E.
    Alharbi A.
    Almatrafi M.B.
    International Journal of Applied and Computational Mathematics, 2020, 6 (6)
  • [4] Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation
    Karpman, V.I.
    Rasmussen, J.J.
    Shagalov, A.G.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 266141 - 266141
  • [5] Center Manifold for the Third-Order Nonlinear Schrödinger Equation with Critical Lengths
    Mo Chen
    Acta Applicandae Mathematicae, 2022, 180
  • [6] Dynamical behavior of the fractional generalized nonlinear Schrödinger equation of third-order
    Ahmed, Athar I.
    Algolam, Mohamed S.
    Cesarano, Clemente
    Rizk, Doaa
    Gassem, F.
    Mohammed, Wael W.
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (05)
  • [7] Solitons, rogue waves and interaction behaviors of a third-order nonlinear Schr?dinger equation
    Shi, Kai-Zhong
    Ren, Bo
    Shen, Shou-Feng
    Wang, Guo-Fang
    Peng, Jun-Da
    Wang, Wan-Li
    RESULTS IN PHYSICS, 2022, 37
  • [8] Optical soliton solutions of the third-order nonlinear Schrödinger equation in the absence of chromatic dispersion
    Ozisik, Muslum
    Secer, Aydin
    Bayram, Mustafa
    MODERN PHYSICS LETTERS B, 2025, 39 (11):
  • [9] Dynamics of wave packets and soliton interaction in terms of the third-order nonlinear Schrödinger equation
    Gromov E.M.
    Piskunova L.V.
    Tyutin V.V.
    Radiophysics and Quantum Electronics, 1998, 41 (12) : 1051 - 1055
  • [10] Dynamics of wave packets and soliton interaction in terms of the third-order nonlinear Schrödinger equation
    Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
    Radiophys. Quantum Electron., 12 (1051-1055):