FINITE-DIMENSIONALITY OF ATTRACTORS FOR WAVE EQUATIONS WITH DEGENERATE NONLOCAL DAMPING

被引:2
作者
Tang, Zhijun [1 ]
Yan, Senlin [1 ]
Xu, Yao [2 ]
Zhong, Chengkui [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Wave equations; degenerate nonlocal damping; global attractors; fractal dimension; Strichartz estimates; GLOBAL ATTRACTORS; P-LAPLACIAN; EVOLUTION-EQUATIONS; DYNAMICS; BEHAVIOR;
D O I
10.3934/dcds.2024091
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the fractal dimension of global attractors for a class of wave equations with (single-point) degenerate nonlocal damping. Both the equation and its linearization degenerate into linear wave equations at the degenerate point, and the usual approaches to calculate the dimension of the entirety of attractors do not work directly. Instead, we develop a new process concerning the dimension near the degenerate point individually and show the finite dimensionality of the attractor.
引用
收藏
页码:219 / 247
页数:29
相关论文
共 32 条
  • [1] [Anonymous], 1989, P DAMPING
  • [2] Balakrishnan A.V., 1988, Stabilization of flexible structures, P1
  • [3] Ball JM, 2004, DISCRETE CONT DYN-A, V10, P31
  • [4] Strichartz estimates for the wave equation on manifolds with boundary
    Blair, Matthew D.
    Smith, Hart F.
    Sogge, Christopher D.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1817 - 1829
  • [5] EXPONENTIAL STABILITY FOR THE WAVE EQUATION WITH DEGENERATE NONLOCAL WEAK DAMPING
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Jorge Silva, Marcio A.
    Webler, Claudete M.
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2017, 219 (01) : 189 - 213
  • [6] Chepyzhov V.V., 2002, Attractors for equations of mathematical physics, V49
  • [7] On the attractor for a semilinear wave equation with critical exponent and nonlinear boundary dissipation
    Chueshov, I
    Eller, M
    Lasiecka, I
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) : 1901 - 1951
  • [8] Chueshov I., 2010, J. Abstr. Differ. Equ. Appl, V1, P86
  • [9] Chueshov I., 2015, Dynamics of Quasi-Stable Dissipative Systems
  • [10] Chueshov I, 2008, MEM AM MATH SOC, V195, pVIII