Obstacle Avoidance in Distributed Optimal Coordination of Multirobot Systems: A Trajectory Planning and Tracking Strategy

被引:7
作者
An, Liwei [1 ]
Yang, Guang-Hong [2 ,3 ]
Wasly, Saud [4 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R China
[3] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
[4] King Abdulaziz Univ, Fac Engn, Dept Elect & Comp Engn, Jeddah 21589, Saudi Arabia
来源
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS | 2024年 / 11卷 / 03期
基金
中国国家自然科学基金;
关键词
Collision avoidance; Trajectory planning; Multi-robot systems; Trajectory; Safety; Optimization; Mobile robots; Multirobot systems; obstacle avoidance; trajectory planning; trajectory tracking; MULTIAGENT SYSTEMS; CONSENSUS; ALGORITHMS; AGENTS;
D O I
10.1109/TCNS.2023.3337715
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article studies the problem of obstacle avoidance in the distributed optimal coordination (DOC) for a class of uncertain multirobot systems. Due to the existence of obstacle regions, the considered optimization problem is intrinsically nonconvex, which will result in the generation of some unexpected equilibriums (local minima). The existing results lack systematic obstacle-avoidance trajectory planning approaches such that the robots potentially fall in the unexpected equilibriums and cannot reach the global optimal solution. To address it, a safe reference trajectory planning approach is first designed by online projecting the unsafe part of the existing distributed optimization trajectory into the peripheral boundary of the obstacle region. On this basis, a distributed backstepping tracking control scheme is proposed based on a novel multiplicity-integral-type barrier Lyapunov function. It is proved that all the robot systems can keep away from the unexpected equilibriums and asymptotically reach the global optimal position while avoiding collisions with moving obstacles.
引用
收藏
页码:1335 / 1344
页数:10
相关论文
共 45 条
[1]   Event-Triggered Reference Governors for Collisions-Free Leader-Following Coordination Under Unreliable Communication Topologies [J].
An, Liwei ;
Yang, Guang-Hong ;
Deng, Chao ;
Wen, Changyun .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (04) :2116-2130
[2]   Distributed Optimal Coordination for Heterogeneous Linear Multiagent Systems [J].
An, Liwei ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (12) :6850-6857
[3]   Collisions-Free Distributed Optimal Coordination for Multiple Euler-Lagrangian Systems [J].
An, Liwei ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (01) :460-467
[4]  
An LW, 2020, CHIN CONTR CONF, P5098, DOI 10.23919/CCC50068.2020.9188947
[5]   Distributed secure state estimation for cyber-physical systems under sensor attacks [J].
An, Liwei ;
Yang, Guang-Hong .
AUTOMATICA, 2019, 107 :526-538
[6]   A Swarm-Based Distributed Model Predictive Control Scheme for Autonomous Vehicle Formations in Uncertain Environments [J].
Bono, Antonio ;
Fedele, Giuseppe ;
Franze, Giuseppe .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) :8876-8886
[7]  
Borrmann Urs, 2015, IFAC - Papers Online, V48, P68, DOI 10.1016/j.ifacol.2015.11.154
[8]   Distributed Source Seeking via a Circular Formation of Agents Under Communication Constraints [J].
Brinon-Arranz, Lara ;
Schenato, Luca ;
Seuret, Alexandre .
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2016, 3 (02) :104-115
[9]   Leader-following consensus of multiple uncertain Euler-Lagrange systems under switching network topology [J].
Cai, H. ;
Huang, J. .
INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2014, 43 (3-4) :294-304
[10]   Hamiltonian-Based Clustering ALGORITHMS FOR STATIC AND DYNAMIC CLUSTERING IN DATA MINING AND IMAGE PROCESSING [J].
Casagrande, Daniele ;
Sassano, Mario ;
Astolfi, Alessandro .
IEEE CONTROL SYSTEMS MAGAZINE, 2012, 32 (04) :74-91