Cardiovascular disease diagnosis using cross-domain transfer learning

被引:0
|
作者
Tadesse, Girmaw Abebe [1 ]
Zhu, Tingting [1 ]
Liu, Yong [2 ]
Zhou, Yingling [2 ]
Chen, Jiyan [2 ]
Tian, Maoyi [3 ]
Clifton, David [1 ]
机构
[1] Univ Oxford, Dept Engn & Sci, Oxford, England
[2] Guangdong Prov Peoples Hosp, Guangzhou, Peoples R China
[3] George Inst Global Hlth, Beijing, Peoples R China
来源
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2019年
基金
英国工程与自然科学研究理事会;
关键词
Transfer Learning; Cardiovascular Disease; Deep Learning; Health Informatics;
D O I
10.1109/embc.2019.8857737
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
While cardiovascular diseases (CVDs) are commonly diagnosed by cardiologists via inspecting electrocardiogram (ECG) waveforms, these decisions can be supported by a data-driven approach, which may automate this process. An automatic diagnostic approach often employs hand-crafted features extracted from ECG waveforms. These features, however, do not generalise well, challenged by variation in acquisition settings such as sampling rate and mounting points. Existing deep learning (DL) approaches, on the other hand, extract features from ECG automatically but require construction of dedicated networks that require huge data and computational resource if trained from scratch. Here we propose an end-to-end trainable cross-domain transfer learning for CVD classification from ECG waveforms, by utilising existing vision-based CNN frameworks as feature extractors, followed by ECG feature learning layers. Because these frameworks are designed for image inputs, we employ a stacked spectrogram representation of multi-lead ECG waveforms as a preprocessing step. We also proposed a fusion of multiple ECG leads, using plausible stacking arrangements of the spectrograms, to encode their spatial relations. The proposed approach is validated on multiple ECG datasets and competitive performance is achieved.
引用
收藏
页码:4262 / 4265
页数:4
相关论文
共 50 条
  • [21] A transfer learning approach to cross-domain authorship attribution
    Barlas, Georgios
    Stamatatos, Efstathios
    EVOLVING SYSTEMS, 2021, 12 (03) : 625 - 643
  • [22] Deep Transfer Low-Rank Coding for Cross-Domain Learning
    Ding, Zhengming
    Fu, Yun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019, 30 (06) : 1768 - 1779
  • [23] Cross-domain activity recognition via transfer learning
    Hu, Derek Hao
    Zheng, Vincent Wenchen
    Yang, Qiang
    PERVASIVE AND MOBILE COMPUTING, 2011, 7 (03) : 344 - 358
  • [24] Skeleton-Based Action Recognition Using Graph Convolution and Cross-Domain Transfer Learning
    2024 NATIONAL CONFERENCE ON COMMUNICATIONS, NCC, 2024,
  • [25] Cross-Domain Automatic Modulation Classification Using Multimodal Information and Transfer Learning
    Deng, Wen
    Xu, Qiang
    Li, Si
    Wang, Xiang
    Huang, Zhitao
    REMOTE SENSING, 2023, 15 (15)
  • [26] Cross-Domain Sentiment Classification Based on Representation Learning and Transfer Learning
    Liao X.
    Wu X.
    Gui L.
    Huang J.
    Chen G.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2019, 55 (01): : 37 - 46
  • [27] A Progressive and Cross-Domain Deep Transfer Learning Framework for Wrist Fracture Detection
    Karam, Christophe
    El Zini, Julia
    Awad, Mariette
    Saade, Charbel
    Naffaa, Lena
    El Amine, Mohammad
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2022, 12 (02) : 101 - 120
  • [28] Cross-domain feature selection and diagnosis of oil and gas pipeline defects based on transfer learning
    Wu, Linyu
    Liang, Wei
    Sha, Duolin
    ENGINEERING FAILURE ANALYSIS, 2023, 143
  • [29] Fault Diagnosis of Gearbox Based on Cross-Domain Transfer Learning With Fine-Tuning Mechanism Using Unbalanced Samples
    Sun, Qiang
    Zhang, Yaping
    Chu, Liying
    Tang, Yanning
    Xu, Liangyuan
    Li, Qing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73
  • [30] CRTL: Context Restoration Transfer Learning for Cross-Domain Recommendations
    Zhang, Jiuling
    He, Ming
    IEEE INTELLIGENT SYSTEMS, 2021, 36 (04) : 65 - 72